Open Access
Volume 22, Number 2, March-April 2015
Article Number D204
Number of page(s) 8
Section Dossier: Dietary cholesterol: friend or foe? / Cholestérol alimentaire : ami ou ennemi ?
Published online 10 March 2015
  • Abildayeva K, Jansen PJ, Hirsch-Reinshagen V, et al. 2006. 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J. Biol. Chem. 281: 12799–808. [CrossRef] [Google Scholar]
  • Anderson DH, Radeke MJ, Gallo NB, et al. 2010. The pivotal role of the complement system in aging and age-related macular degeneration: Hypothesis re-visited. Prog. Retin. Eye Res. 29: 95–112. [CrossRef] [PubMed] [Google Scholar]
  • Bidet M, Joubert O, Lacombe B, et al. 2011. The hedgehog receptor patched is involved in cholesterol transport. PLoS One 6: e23834. [CrossRef] [PubMed] [Google Scholar]
  • Björkhem I. 2006. Crossing the barrier: oxysterols as cholesterol transporters and metabolic modulators in the brain. J. Int. Med. 260: 493–508. [CrossRef] [Google Scholar]
  • Björkhem I, Meaney S. 2004. Brain cholesterol: long secret life behind a barrier. Arterioscler Thromb Vasc. Biol. 24: 806–15. [Google Scholar]
  • Björkhem I, Lütjohann D, Diczfalusy U, Stahle L, Ahlborg G, Wahren J. 1998. Cholesterol homeostasis in human brain: turnover of 24S-hydroxycholesterol and evidence for a cerebral origin of most of this oxysterol in the circulation. J. Lipid. Res. 39: 1594–600. [PubMed] [Google Scholar]
  • Bogdanovic N, Bretillon L, Lund EG, et al. 2001. On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci. Lett. 314: 45–8. [CrossRef] [PubMed] [Google Scholar]
  • Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB. 2010. The dynamic nature of Bruch’s membrane. Progr. Retin. Eye Res. 29: 1–18. [CrossRef] [Google Scholar]
  • Bretillon L, Diczfalusy U, Bjorkhem I, et al. 2007. Cholesterol-24S-hydroxylase (CYP46A1) is specifically expressed in neurons of the neural retina. Curr. Eye Res. 32: 361–6. [CrossRef] [PubMed] [Google Scholar]
  • Bretillon L, Lutjohann D, Stahle L, et al. 2000a. Plasma levels of 24S-hydroxycholesterol reflect the balance between cerebral production and hepatic metabolism and are inversely related to body surface. J. Lipid. Res. 41: 840–5. [PubMed] [Google Scholar]
  • Bretillon L, Sidén A, Wahlund LO, et al. 2000b. Plasma levels of 24S-hydroxycholesterol in patients with neurological diseases. Neurosci. Lett. 293: 87–90. [CrossRef] [PubMed] [Google Scholar]
  • Bretillon L, Thuret G, Grégoire S, et al. 2008. Lipid and fatty acid profile of the retina, retinal pigment epithelium/choroid, and lacrimal gland, and associations with adipose tissue fatty acids in human subjects. Exp. Eye Res. 87: 521–8. [Google Scholar]
  • Brown J, 3rd, Theisler C, Silberman S, et al. 2004. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J. Biol. Chem. 279: 34674–81. [CrossRef] [PubMed] [Google Scholar]
  • Centanin L, Wittbrodt J. 2014. Retinal neurogenesis. Development 141: 241–4. [CrossRef] [PubMed] [Google Scholar]
  • Claudepierre T, Paques M, Simonutti M, et al. 2010. Lack of Niemann-Pick type C1 induces age-related degeneration in the mouse retina. Mol. Cell Neurosci. 43: 164–76. [CrossRef] [PubMed] [Google Scholar]
  • Curcio CA, Johnson M, Huang JD, Rudolf M. 2009. Aging, Age-related Macular Degeneration, and the Response-to-Retention of Apolipoprotein B-Containing Lipoproteins. Prog. Retin. Eye Res. 28: 393–422. [CrossRef] [PubMed] [Google Scholar]
  • Curcio CA, Johnson M, Huang JD, Rudolf M. 2010. Apolipoprotein B-containing lipoproteins in retinal aging and age-related macular degeneration. J. Lipid. Res. 51: 451–67. [CrossRef] [PubMed] [Google Scholar]
  • Curcio C, Johnson M, Rudolf M, Huang J. 2011. The oil spill in ageing Bruch membrane. Br. J. Ophthalmol. 95: 1638–45. [CrossRef] [PubMed] [Google Scholar]
  • Dietschy JM, Turley SD. 2004. Thematic review series: brain Lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J. Lipid. Res. 45: 1375–97. [CrossRef] [PubMed] [Google Scholar]
  • Dzeletovic S, Breuer O, Lund E, Diczfalusy U. 1995. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal. Biochem. 225: 73–80. [CrossRef] [PubMed] [Google Scholar]
  • Ferris FL, Davis MD, Clemons TE, et al. 2005. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch. Ophthalmol. 123: 1570–4. [CrossRef] [PubMed] [Google Scholar]
  • Fliesler SJ, Bretillon L. 2010. The ins and outs of cholesterol in the vertebrate retina. J. Lipid. Res. 51: 3399–413. [Google Scholar]
  • Fliesler SJ, Peachey NS, Richards MJ, Nagel BA, Vaughan DK. 2004. Retinal degeneration in a rodent model of Smith-Lemli-Opitz syndrome: electrophysiologic, biochemical, and morphologic features. Arch. Ophthalmol. 122: 1190–200. [CrossRef] [PubMed] [Google Scholar]
  • Fourgeux C, Martine L, Björkhem I, et al. 2009. Primary open-angle glaucoma: association with cholesterol 24S-hydroxylase (CYP46A1) gene polymorphism and plasma 24-hydroxycholesterol levels. Invest. Ophthalmol. Vis. Sci. 50: 5712–7. [CrossRef] [PubMed] [Google Scholar]
  • Fourgeux C, Dugas B, Richard F, et al. 2012. Single nucleotide polymorphism in the cholesterol-24S-hydroxylase (CYP46A1) gene and its association with CFH and LOC387715 gene polymorphisms in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 53: 7026–33. [CrossRef] [PubMed] [Google Scholar]
  • Fourgeux C, Martine L, Pasquis B, et al. 2012. Steady-state levels of 24S-hydroxycholesterol are maintained by glial cells intervention after elevation of intraocular pressure in the rat. Acta. Ophthalmol. 90: e560–e4. [CrossRef] [PubMed] [Google Scholar]
  • Fourgeux C, Martine L, Acar N, Bron AM, Creuzot-Garcher CP, Bretillon L. 2014. In vivo consequences of cholesterol-24S-hydroxylase (CYP46A1) inhibition by voriconazole on cholesterol homeostasis and function in the rat retina. Biochem. Biophys. Res. Commun. 446: 775–81. [CrossRef] [PubMed] [Google Scholar]
  • Gilardi F, Viviani B, Galmozzi A, et al. 2009. Expression of sterol 27-hydroxylase in glial cells and its regulation by liver X receptor signaling. Neuroscience 164: 530–40. [CrossRef] [PubMed] [Google Scholar]
  • Harwerth RS, Wheat JL, Rangaswamy NV. 2008. Age-Related Losses of Retinal Ganglion Cells and Axons. Invest. Ophthalmol. Vis. Sci. 49: 4437–43. [CrossRef] [PubMed] [Google Scholar]
  • Hayashi H, Campenot RB, Vance DE, Vance JE. 2004. Glial lipoproteins stimulate axon growth of central nervous system neurons in compartmented cultures. J. Biol. Chem. 279: 14009–15. [CrossRef] [PubMed] [Google Scholar]
  • Heverin M, Bogdanovic N, Lutjohann D, et al. 2004. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J. Lipid. Res. 45: 186–93. [CrossRef] [Google Scholar]
  • Heverin M, Meaney S, Lutjohann D, et al. 2005. Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain. J. Lipid. Res. 46: 1047–52. [CrossRef] [PubMed] [Google Scholar]
  • Hudry E, Van Dam D,Kulik W, et al. 2010. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol. Ther. 18: 44–53. [Google Scholar]
  • Irons M, Elias ER, Salen G, Tint GS, Batta AK. 1993. Defective cholesterol biosynthesis in Smith-Lemli-Opitz syndrome. Lancet. 341: 1414. [CrossRef] [Google Scholar]
  • Joubert O, Nehme R, Fleury D, et al. 2009. Functional studies of membrane-bound and purified human Hedgehog receptor Patched expressed in yeast. Biochim. Biophys. Acta 1788: 1813–21. [CrossRef] [PubMed] [Google Scholar]
  • Joubert O, Nehme R, Bidet M, Mus-Veteau I. 2010. Heterologous expression of human membrane receptors in the yeast Saccharomyces cerevisiae. Methods Mol. Biol. 601: 87–103. [CrossRef] [PubMed] [Google Scholar]
  • Karpen HE, Bukowski JT, Hughes T, Gratton JP, Sessa WC, Gailani MR. 2001. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem. 276: 19503–11. [CrossRef] [PubMed] [Google Scholar]
  • Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L. 1991. The Wisconsin age-related maculopathy grading system. Ophthalmology 98: 1128–34. [CrossRef] [PubMed] [Google Scholar]
  • Klein R, Klein BEK. 2013. The Prevalence of Age-Related Eye Diseases and Visual Impairment in Aging: Current Estimates. Invest. Ophthalmol. Vis. Sci. 54: ORSF5–ORSF13. [Google Scholar]
  • Kotti TJ, Ramirez DM, Pfeiffer BE, Huber KM, Russell DW. 2006. Brain cholesterol turnover required for geranylgeraniol production and learning in mice. Proc. Natl. Acad. Sci. USA 103: 3869–74. [Google Scholar]
  • Leoni V, Masterman T, Diczfalusy U, De Luca G,Hillert J, Bjorkhem I. 2002. Changes in human plasma levels of the brain specific oxysterol 24S-hydroxycholesterol during progression of multiple sclerosis. Neurosci. Lett. 331: 163–6. [CrossRef] [PubMed] [Google Scholar]
  • Leung CK-S, Cheung CY-L, Weinreb RN, et al. 2011. Evaluation of retinal nerve fiber layer progression in glaucoma: A comparison between the fast and the regular retinal nerve fiber layer scans. Ophthalmology 118: 763–7. [CrossRef] [PubMed] [Google Scholar]
  • Liu JP, Tang Y, Zhou S, Toh BH, McLean C, Li H. 2010. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol. Cell. Neurosci. 43: 33–42. [CrossRef] [PubMed] [Google Scholar]
  • Lund EG, Guileyardo JM, Russell DW. 1999. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci. USA 96: 7238–43. [CrossRef] [PubMed] [Google Scholar]
  • Lutjohann D, Breuer O, Ahlborg G, et al. 1996. Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc. Natl. Acad. Sci. USA 93: 9799–804. [CrossRef] [PubMed] [Google Scholar]
  • Lutjohann D, Papassotiropoulos A, Bjorkhem I, et al. 2000. Plasma 24S-hydroxycholesterol (cerebrosterol) is increased in Alzheimer and vascular demented patients. J. Lipid. Res. 41: 195–8. [PubMed] [Google Scholar]
  • Masland RH. 2001. The fundamental plan of the retina. Nat. Neurosci. 4: 877–86. [Google Scholar]
  • Mast N, Reem R, Bederman I, et al. 2011. Cholestenoic Acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest. Ophthalmol. Vis. Sci. 52: 594–603. [CrossRef] [PubMed] [Google Scholar]
  • Mauch DH, Nagler K, Schumacher S, et al. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294: 1354–7. [CrossRef] [PubMed] [Google Scholar]
  • Meaney S, Bodin K, Diczfalusy U, Bjorkhem I. 2002. On the rate of translocation in vitro and kinetics in vivo of the major oxysterols in human circulation: critical importance of the position of the oxygen function. J. Lipid Res. 43: 2130–5. [CrossRef] [PubMed] [Google Scholar]
  • Milagre I, Nunes MJ, Castro-Caldas M, Moutinho M, Gama MJ, Rodrigues E. 2012. Neuronal differentiation alters the ratio of Sp transcription factors recruited to the CYP46A1 promoter. J. Neurochem. 120: 220–9. [CrossRef] [PubMed] [Google Scholar]
  • Milagre I, Olin M, Nunes MJ, et al. 2012. Marked change in the balance between CYP27A1 and CYP46A1 mediated elimination of cholesterol during differentiation of human neuronal cells. Neurochem. Int. 60: 192–8. [CrossRef] [PubMed] [Google Scholar]
  • Nachtergaele S, Mydock LK, Krishnan K, et al. 2012. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8: 211–20. [CrossRef] [PubMed] [Google Scholar]
  • Nehme R, Joubert O, Bidet M, Lacombe B, Polidori A, Pucci B, Mus-Veteau I. 2010. Stability study of the human G-protein coupled receptor, Smoothened. Biochim. Biophys. Acta 1798: 1100–10. [CrossRef] [PubMed] [Google Scholar]
  • Ohtsuki S, Ito S, Matsuda A, Hori S, Abe T, Terasaki T. 2007. Brain-to-blood elimination of 24S-hydroxycholesterol from rat brain is mediated by organic anion transporting polypeptide 2 (oatp2) at the blood-brain barrier. J. Neurochem. 103: 1430–8. [CrossRef] [PubMed] [Google Scholar]
  • Osono Y, Woollett LA, Herz J, Dietschy JM. 1995. Role of the low density lipoprotein receptor in the flux of cholesterol through the plasma and across the tissues of the mouse. J. Clin. Invest. 95: 1124–32. [CrossRef] [PubMed] [Google Scholar]
  • Pfrieger FW. 2003. Cholesterol homeostasis and function in neurons of the central nervous system. Cell Mol. Life Sci. 60: 1158–71. [PubMed] [Google Scholar]
  • Pitas RE, Boyles JK, Lee SH, Hui D, Weisgraber KH. 1987. Lipoproteins and their receptors in the central nervous system. Characterization of the lipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J. Biol. Chem. 262: 14352–60. [PubMed] [Google Scholar]
  • Porter JA, Young KE, Beachy PA. 1996. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274: 255–9. [CrossRef] [PubMed] [Google Scholar]
  • Quan G, Xie C, Dietschy JM, Turley SD. 2003. Ontogenesis and regulation of cholesterol metabolism in the central nervous system of the mouse. Brain. Res. Dev. Brain. Res. 146: 87–98. [CrossRef] [PubMed] [Google Scholar]
  • Quigley HA, Broman AT. 2006. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90: 262–7. [CrossRef] [PubMed] [Google Scholar]
  • Ramirez DM, Andersson S, Russell DW. 2008. Neuronal expression and subcellular localization of cholesterol 24-hydroxylase in the mouse brain. J. Comp. Neurol. 507: 1676–93. [CrossRef] [PubMed] [Google Scholar]
  • Saher G, Quintes S, Nave KA. 2011. Cholesterol: a novel regulatory role in myelin formation. Neuroscientist. 17: 79–93. [CrossRef] [PubMed] [Google Scholar]
  • Saito M, Benson EP, Rosenberg A. 1987. Metabolism of cholesterol and triacylglycerol in cultured chick neuronal cells, glial cells, and fibroblasts: accumulation of esterified cholesterol in serum-free culture. J. Neurosci. Res. 18: 319–25. [CrossRef] [PubMed] [Google Scholar]
  • Schnebelen C, Pasquis B, Salinas-Navarro M, et al. 2009. A dietary combination of omega-3 and omega-6 polyunsaturated fatty acids is more efficient than single supplementations in the prevention of retinal damage induced by elevation of intraocular pressure in rats. Graefes. Arch. Clin. Exp. Ophthalmol. 247: 1191–203. [Google Scholar]
  • Shobab LA, Hsiung GY, Feldman HH. 2005. Cholesterol in Alzheimer’s disease. Lancet Neurol. 4: 841–52. [Google Scholar]
  • Smiljanic K, Lavrnja I, Mladenovic Djordjevic A, et al. 2010. Brain injury induces cholesterol 24-hydroxylase (Cyp46) expression in glial cells in a time-dependent manner. Histochem. Cell. Biol. 134: 159–69. [CrossRef] [PubMed] [Google Scholar]
  • Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR. 2006. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol. Vis. 12: 1319–33. [PubMed] [Google Scholar]
  • Vaillant C, Monard D. 2009. SHH pathway and cerebellar development. Cerebellum 8: 291–301. [CrossRef] [PubMed] [Google Scholar]
  • Vance JE. 2012. Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis. Model Mech. 5: 746–55. [CrossRef] [PubMed] [Google Scholar]
  • Vance JE, Hayashi H, Karten B. 2005. Cholesterol homeostasis in neurons and glial cells. Semin. Cell Dev. Biol. 16: 193–212. [CrossRef] [PubMed] [Google Scholar]
  • Vanier MT. 2014. Complex lipid trafficking in Niemann-Pick disease type C. J. Inherit. Metab. Dis. [Google Scholar]
  • Varma R, Foong AWP, Lai M-Y, Choudhury F, Klein R, Azen SP. 2010. Four-Year Incidence and Progression of Age-Related Macular Degeneration: The Los Angeles Latino Eye Study. Am. J. Ophthalmol. 149: 741–51. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.