Open Access
Volume 21, Number 6, November-December 2014
Article Number D607
Number of page(s) 12
Section Dossier: Varietal selection of oilseeds: the prospective nutritional and technological benefits / Perspectives offertes par la sélection variétale sur la qualité nutritionnelle et technologique des oléagineux
Published online 14 November 2014
  • Agarwal M, Shrivastava N, Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 27: 617–631. [CrossRef] [PubMed] [Google Scholar]
  • Barthole G, Lepiniec L, Rogowsky PM, Baud S. 2012. Controlling lipid accumulation in cereal grains, Plant Sci. 185: 33–39. [CrossRef] [PubMed] [Google Scholar]
  • Beale MH, Ward JL, Baker JM. 2009. Establishing substantial equivalence: metabolomics. Methods Mol. Biol. 478: 289–303. [CrossRef] [PubMed] [Google Scholar]
  • Bernardo R. 2008. Molecular markers and selection for complex traits in plants: learning from the past 20 years. Crop Sci. 48: 1649–1664. [CrossRef] [Google Scholar]
  • Beyer P. 2010. Golden Rice and “Golden” crops for human nutrition. New Biotechnol. 27: 478–481. [CrossRef] [Google Scholar]
  • Bielecka M, Kaminski F, Adams I, et al. 2014. Targeted mutation of D12 and D15 desaturase genes in hemp produce major alterations in seed fatty acid composition including a high oleic hemp oil. Plant Biotechnol. J. 12: 613–623. [CrossRef] [PubMed] [Google Scholar]
  • Bourgis F, Kilaru A, Cao X, et al. 2011. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc. Natl. Acad. Sci. USA 108: 12527–12532. [CrossRef] [Google Scholar]
  • Cheng J1, Zhu LH, Salentijn EM, et al. 2013. Functional analysis of the omega-6 fatty acid desaturase (CaFAD2) gene family of the oil seed crop Crambe abyssinica. BMC Plant Biol. 13:146. [CrossRef] [PubMed] [Google Scholar]
  • Dussert S, Guerin C, Andersson M, et al. 2013. Comparative transcriptome analysis of three oil palm fruit and seed tissues that differ in oil content and fatty acid composition. Plant Physiol. 162: 1337–1358. [CrossRef] [PubMed] [Google Scholar]
  • Gayen D, Ali N, Ganguly M, Paul S, Datta K, Datta KS. 2014. RNAi mediated silencing of lipoxygenase gene to maintain rice grain quality and viability during storage. Plant Cell Tissue Organ Cult. 118: 229–243. [CrossRef] [Google Scholar]
  • Gómez-Vidal S, Salinas J, Tena M, Lopez-Llorca LV. 2009. Proteomic analysis of date palm (Phoenix dactylifera L.) responses to endophytic colonization by entomopathogenic fungi. Electrophoresis 30: 2996–3005. [CrossRef] [PubMed] [Google Scholar]
  • Guimarães EP, et al., Eds. 2007. Molecular marker-assisted selection. Current status and future perspectives in crops, livestock, forestry and fish. Rome: FAO, available at: [Google Scholar]
  • Gunstone FD. 2011. Supplies of vegetable oils for non-food purposes, Eur. J. Lipid Sci. Technol. 113: 3–7. [CrossRef] [Google Scholar]
  • Harjes CE, Rocheford TR, Bai L, et al. 2008. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319: 330–333. [CrossRef] [PubMed] [Google Scholar]
  • Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA. 2013. The modification of plant oil composition via metabolic engineering – better nutrition by design. Plant Biotechnol. J. 11: 157–168. [CrossRef] [PubMed] [Google Scholar]
  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 12: 934–940. [CrossRef] [PubMed] [Google Scholar]
  • Hu Z-Y, Hua W, Zhang L, et al. 2013. Seed structure characteristics to form ultrahigh oil content in rapeseed. PLoS One 8: e62099. [CrossRef] [PubMed] [Google Scholar]
  • ISAAA’ Brief 46. 2013. Available at: http://www. executivesummary/default.asp. [Google Scholar]
  • Kalua CM, Allen MS, Bedgood DR Jr, Bishop AG, Prenzler PD, Roberts K. 2007. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 100: 273–286. [CrossRef] [Google Scholar]
  • Kanehisa M, Bork P. 2003. Bioinformatics in the post-sequence era. Nat. Genet. Suppl. 33: 305–310. [CrossRef] [Google Scholar]
  • Li DR, Tian JH, Chen WJ, Zhang WX. 2011. Breeding technologies and germplasm innovation on extra-high-oil content in Brassica napus. Acta Agricultural Boreali-occidentalis Sinica 20: 83–87. [Google Scholar]
  • López-Flores I, Garrido-Ramos MA. 2012. The repetitive DNA content of eukaryotic genomes. Genome Dyn. 7: 1–28. [CrossRef] [PubMed] [Google Scholar]
  • Ma W, Kong Q, Arondel V, et al. 2013. WRINKLED1, a ubiquitous regulator in oil accumulating tissues from Arabidopsis embryos to oil palm mesocarp. PLoS One 8: e68887. [CrossRef] [PubMed] [Google Scholar]
  • Marchive C, Nikovics K, To A, Lepiniec L. Baud S. 2014. Transcriptional regulation of fatty acid production in higher plants: molecular bases and biotechnological outcomes. Eur. J. Lipid Sci. Technol. DOI: 10.1002/ejlt.201400027. [Google Scholar]
  • Mietkiewska E, Miles R, Wickramarathna A, et al. 2014. Combined transgenic expression of Punica granatum conjugase (FADX) and FAD2 desaturase in high linoleic acid Arabidopsis thaliana mutant leads to increased accumulation of punicic acid Planta 240: 575–583. [CrossRef] [PubMed] [Google Scholar]
  • Montoya C, Lopes R, Flori A, et al. 2013. Quantitative trait loci (QTLs) analysis of palm oil fatty acid composition in an interspecific pseudo-backcross from Elaeis oleifera (H.B.K.) Cortés and oil palm (Elaeis guineensis Jacq.), Tree Genet. Genome 9: 1207–1225. [CrossRef] [Google Scholar]
  • Morcillo F, Cros D, Billotte N, et al. 2013. Improving palm oil quality through identification and mapping of the lipase gene causing oil deterioration. Nat. Commun. 4: 2160. [CrossRef] [PubMed] [Google Scholar]
  • Murphy DJ, Ed. 1994. Designer Oil Crops – Breeding, processing and biotechnology. Weinheim, New York: VCH. [Google Scholar]
  • Murphy DJ. 1996. Engineering oil production in rapeseed and other Oil crops. Trends Biotechnol. 14: 206–213. [CrossRef] [Google Scholar]
  • Murphy DJ. 2007a. People, plants, and genes: the story of crops and humanity. Oxford University Press, UK. [Google Scholar]
  • Murphy DJ. 2007b. Plant breeding and biotechnology: Societal context and the future of agriculture. Cambridge, UK: Cambridge University Press. [Google Scholar]
  • Murphy DJ. 2009. Industrial oil crops, when will they finally deliver on their promise? Inform. 20: 749–754. [Google Scholar]
  • Murphy DJ. Manipulation of oil crops for industrial applications, In: Singh BP, Ed., Industrial crops and uses. CABI Press, 2010, pp. 183–206. [Google Scholar]
  • Murphy DJ. 2011. Plants, biotechnology, and agriculture. CABI Press. [Google Scholar]
  • Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HTM, Shanklin J, et al. 2014. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. Plant Biotechnol. J. DOI:10.1111/pbi.12233. [Google Scholar]
  • Neoh BK, Teh HF, Ng TL, et al. 2013. Differential metabolite profiling of metabolites in Oil Palm Mesocarp at different stages of oil biosynthesis. J. Agric. Food Chem. 61: 1920–1927. [CrossRef] [PubMed] [Google Scholar]
  • Ogas J, Cheng JC, Sung ZR, Somerville C. 1997. Cellular differentiation regulated by gibberellin in the Arabidopsis thaliana pickle mutant. Science 277: 91–94. [CrossRef] [PubMed] [Google Scholar]
  • Paine JA, Shipton CA, Chaggar S, et al. 2005. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23: 482–487. [CrossRef] [PubMed] [Google Scholar]
  • Rafalski JA (2010) Association genetics in crop improvement. Curr. Opin. Plant Biol. 13: 174–180. [CrossRef] [PubMed] [Google Scholar]
  • Rahman H, Harwood JL, Weselake R. 2013. Increasing seed oil content in Brassica species through breeding and biotechnology. Lipid Technol. 25: 182–185. [CrossRef] [Google Scholar]
  • Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O. 2014. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 77: 198–208. [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-López N, Haslam RP, Venegas-Calerón M, et al. 2012. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res. 21: 1233–1243. [CrossRef] [PubMed] [Google Scholar]
  • Rothamsted. 2014. GM Camelina field Trial: Public information, Rothamsted. Research. Availble at: http://www.rothamsted. [Google Scholar]
  • Shukla VK, Doyon Y, Miller JC, et al. 2009. Precise genome modification in the crop species Zea mays using zinc-finger nucleases, Nature 459: 437–441. [CrossRef] [PubMed] [Google Scholar]
  • Soh AC. 2011. Genomics and plant breeding. J. Oil Palm Res. 23: 1019–1028. [Google Scholar]
  • Shu QY, Ed. 2009. Induced Plant Mutations in the genomics era, FAO, Rome, Availble at: [Google Scholar]
  • Tang G, Hu Y, Yin SA, et al. 2012. ß-Carotene in Golden Rice is as good as ß-carotene in oil at providing vitamin A to children. Am. J. Clin. Nutr. 96: 658–964. [CrossRef] [PubMed] [Google Scholar]
  • Teh LS, Neoh BK, Hong MP, et al. 2013. Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp. PLoS One 8: e61344. [CrossRef] [PubMed] [Google Scholar]
  • To A, Joubès J, Barthole G, et al. 2012. WRINKLED Transcription Factors Orchestrate Tissue-Specific Regulation of Fatty Acid Biosynthesis in Arabidopsis. Plant Cell 24: 5007–5023. [CrossRef] [PubMed] [Google Scholar]
  • Tranbarger TJ, Dussert S, Joët T, et al. 2011. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. Plant Physiol. 156: 564–584. [CrossRef] [PubMed] [Google Scholar]
  • Turesson H, Marttila S, Gustavsson KE, et al. 2010. Characterization of oil and starch accumulation in tubers of Cyperus esculentus var. sativus (Cyperaceae): A novel model system to study oil reserves in nonseed tissues. Am. J. Bot. 97: 1884–1893. [CrossRef] [PubMed] [Google Scholar]
  • Vanhercke T, Wood CC, Stymne S, Singh SP, Green AG. 2013. Metabolic engineering of plant oils and waxes for use as industrial feedstocks. Plant Biotechnol. J. 11: 196–210. [CrossRef] [Google Scholar]
  • Vanhercke T, El Tahchy A,Liu Q et al. 2014. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves. Plant Biotechnol. J. 12: 231–239. [CrossRef] [PubMed] [Google Scholar]
  • Van Wolfswinkel JC, Ketting RF. 2010. The role of small non-coding RNAs in genome stability and chromatin organization. J. Cell Sci. 123: 1825–1839. [CrossRef] [PubMed] [Google Scholar]
  • Wu G, Truksa M, Datla N, et al. 2005. Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat. Biotechnol. 23: 1013–1017. [CrossRef] [PubMed] [Google Scholar]
  • Xu Y. 2010. Molecular plant breeding. Oxford, UK: CABI. [Google Scholar]
  • Xue et al. 2013. Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nat. Biotechnol 31: 734–740. [CrossRef] [PubMed] [Google Scholar]
  • Zamri R. 2010. Differential expressions of proteomes of oil palm (Elaeis Guineensis Jacq.) and Arabidopsis thaliana tissues during callogenesis. Masters thesis, Universiti Putra Malaysia. [Google Scholar]
  • Zanetti F, Monti A, Berti MT. 2013. Challenges and opportunities for new industrial oilseed crops in EU-27: A review. Ind. Crops Products 50: 580–595. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.