Open Access
Issue
OCL
Volume 20, Number 2, March-April 2013
Page(s) 108 - 118
Section Agronomie – Environnement
DOI https://doi.org/10.1051/ocl.2013.0501
Published online 15 March 2013
  • Carter MS, Chirinda N. No effect of cropping system on the greenhouse gas N2O. ICROFS News 2009 ; 2 : 9–10. [Google Scholar]
  • CETIOM. Le Colza. Paris : coédition France Agricole-CETIOM, (sous presse). [Google Scholar]
  • CITEPA. Rapport national d’inventaire pour la France au titre de la Convention Cadre des Nations Unies sur les Changements Climatiques et du Protocole de Kyoto. Paris : 2011a. [Google Scholar]
  • CITEPA. Substances relatives à l’accroissement de l’effet de serre. Paris : 2011b. [Google Scholar]
  • Clough TJ, Di HJ, Cameron KC, et al. Accounting for utilization of a N2O mitigation tool in the IPCC inventory methodology for agricultural soils. Nutr Cycl Agroecosys 2007 ; 78 : 1–14. [CrossRef] [Google Scholar]
  • Di HJ Cameron KC. Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamide, a nitrification inhibitor. Soil Use Manage 2003 ; 19 : 284–290. [CrossRef] [Google Scholar]
  • Gagnon B, Ziadia N, Rochette P, Chantigny MH Angers DA. Fertilizer source influenced nitrous oxide emissions from a clay soil under corn. Soil Sci Soc Am J 2011 ; 75 : 595–604. [CrossRef] [Google Scholar]
  • GIEC. Volume 4 : Agriculture, foresterie et autres affectations des terres, Chapitre 11: Emission de N2O des sols gérés et émission de CO2 dues au chaulage et à l’application d’urée. In: Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (Eds.), Lignes directrices 2006 du GIEC pour les inventaires nationaux de gaz à effet de serre. Hayama (Japon) : IGES, 2006. [Google Scholar]
  • Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Till Res 2005 ; 83 : 53–72. [CrossRef] [Google Scholar]
  • Halvorson AD, Del Grosso SJ, Jantalia CP. Nitrogen source effects on soil nitrous oxide emissions from strip-till corn. J Environ Qual 2011 ; 40 : 1775–1786. [CrossRef] [PubMed] [Google Scholar]
  • Hénault C, Revellin C. Inoculants of leguminous crops for mitigating soil emissions of greenhouse gas nitrous oxide. Plant Soil 2011 ; 346 : 289–296. [CrossRef] [Google Scholar]
  • Hénault C, Chèneby D, Heurlier K, Garrido F, Perez S, Germon JC. Laboratory kinetics of soil denitrification are useful to discriminate soils with potentially high levels of N2O emission on the field scale. Agronomie 2001 ; 21 : 713–723. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hénault C, Devis X, Page S, Justes E, Reau R, Germon JC. Nitrous oxide emissions under different soil and land management conditions. Biol Fert Soils 1998 ; 26 : 199–207 [CrossRef] [Google Scholar]
  • INRA. Des inoculants de légumineuses pour réduire les émissions des sols en oxyde d’azote nitreux. http://www.inra.fr/les_partenariats/collaborations_et_partenaires/entreprises/en_direct_des_labos/inoculants_de_legumineuses. Page consultée le 1er novembre 2012. [Google Scholar]
  • Jeuffroy MH, Baranger E, Carrouée B, et al. Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea. Biogeosciences 2013. (sous presse). [PubMed] [Google Scholar]
  • Laville P, Hénault C, Renault P, et al. Field comparison of nitrous oxide emission measurement using micrometeorological and chambers methods. Agronomie 1997 ; 17 : 375–388. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lesschen JP, Kuikman PJ, Smith P, Schils RLM, Oudendag DA. Quantification of mitigation potentials of agricultural practices for Europe. In : European Geosciences Union (EGU) General Assembly 2009. Geophysical Research Abstracts 11, Vienna, Austria, 2009-04-19/2009-04-24. [Google Scholar]
  • Linn DM, Doran JW. Effect of water filled pore space on carbon dioxide and nitrous oxide production in tilled and non tilled soils. Soil Sci Soc Am J 1984 ; 48 : 1267–1272. [CrossRef] [Google Scholar]
  • Linquist B, Van Groenigen KJ, Adviento-Borbe MA, Pittelkow C, Van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol 2012 ; 18 : 194–209. [CrossRef] [Google Scholar]
  • Mathieu O, Lévêque J, Milloux MJ, Bizouard F, Andreux F, Hénault C. Le traçage isotopique pour étudier la production par les microorganismes du sol d’oxyde nitreux, gaz à effet de serre. UB Sciences 2008 ; 3 : 45–51. [Google Scholar]
  • Millar N, Ndufa JK, Cadisch G, Baggs EM. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochem Cy 2004 ; 18 : GB1032. [CrossRef] [Google Scholar]
  • Mørkved PT, Dörsch P, Bakken LR. The N2O product ratio of nitrification and its dependence on long-term changes in soil pH. Soil Biol Biochem 2007 ; 39 : 2048–2057. [CrossRef] [Google Scholar]
  • Philibert A, Loyce C, Makowski D. Quantifying uncertainties in N2O emission due to N fertilizer application in cultivated areas. PLoS ONE 2012 ; 7 : e50950. [CrossRef] [PubMed] [Google Scholar]
  • Rochette P, Worth DE, Huffman EC, et al. Estimation of N2O emissions from agricultural soils in Canada. II. 1990–2005 inventory. Can J. Soil Sci 2008; 88 : 655–669. [CrossRef] [Google Scholar]
  • Rochette P. No-till only increases N2O emissions in poorly-aerated soils. Soil Till Res 2008 ; 101 : 97–100. [CrossRef] [Google Scholar]
  • Rochette P, Janzen HH. Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosys 2005 ; 73 : 171–179. [CrossRef] [Google Scholar]
  • Rochette P, Van Bochove E, Prévost D, Angers DA, Côté D, Bertrand N. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year : II. Nitrous oxide fluxes and mineral nitrogen. Soil Sci Soc Am J 2000 ; 64 : 1396–1403. [CrossRef] [Google Scholar]
  • Six J, Ogle SM, Breidt FJ, Conant RT, Mosier AR, Paustian K. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob Change Biol 2004 ; 10 : 155–160. [CrossRef] [Google Scholar]
  • Van Den Heuvel RN, Bakker SE, Jetten MSM, Hefting MM. Decreased N2O reduction by low soil pH causes high N2O emissions in a riparian ecosystem. Geobiology 2011 ; 9 : 294–300. [CrossRef] [PubMed] [Google Scholar]
  • Van Groenigen JW, Velthof GL, Oenema O, Van Groenigen KJ, Van Kessel C. Towards an agronomic assessment of N2O emissions: a case study for arable crops. Eur J Soil Sci 2010 ; 61 : 903–913. [CrossRef] [Google Scholar]
  • Venterea RT, Dolan MS, Ochsner TE. Urea decreases nitrous oxide emissions compared with anhydrous ammonia in a Minnesota corn cropping system. Soil Sci Soc Am J 2010 ; 74 : 407–418. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.