Open Access
Volume 17, Number 6, November-Décembre 2010
Dossier : Palmier à huile et développement durable
Page(s) 368 - 374
Section Agronomie – Environnement
Published online 15 November 2010
  • Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear JW. MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 2006; 62: 15–31. [CrossRef] [PubMed] [Google Scholar]
  • Adam H, Jouannic S, Orieux Y, et al. Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 2007; 58: 1245–1259. [CrossRef] [PubMed] [Google Scholar]
  • Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000; 408: 796–815. [CrossRef] [PubMed] [Google Scholar]
  • Baxter I. Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 2009; 12: 381–386. [CrossRef] [PubMed] [Google Scholar]
  • Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 2009; 103: 551–560. [CrossRef] [PubMed] [Google Scholar]
  • Fitzherbert EB, Struebig MJ, Morel A, et al. How will oil palm expansion affect biodiversity? Trends Ecol Evol 2008; 23: 538–545. [CrossRef] [PubMed] [Google Scholar]
  • Forner-Giner MA, Llosa MJ, Carrasco JL, Perez-Amador MA, Navarro L, Ancillo G. Differential gene expression analysis provides new insights into the molecular basis of iron deficiency stress response inthe citrus rootstock Poncirus trifoliata (L.) Raf. J Exp Bot 2010; 61: 483–490. [CrossRef] [PubMed] [Google Scholar]
  • GOLD, Genome On Line Database V3.0, 2010. [Google Scholar]
  • Hirel B, Le Gouis J, Ney B, Gallais A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 2007: 1–19. [PubMed] [Google Scholar]
  • International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature 2005; 436: 793–800. [CrossRef] [PubMed] [Google Scholar]
  • Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 2007; 449: 463–467. [CrossRef] [PubMed] [Google Scholar]
  • Koh LP, Wilcove DS. Is oil palm agriculture really destroying tropical biodiversity? Conservation Letters 2008; 20: 1–5. [Google Scholar]
  • Kirst M, Myburg AA, De Leon JPG, Kirst ME, Scott J, Sederoff R. Coordinated genetic regulation of growth and lignin revealed by Quantitative Trait Locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 2004; 135: 2368–2378. [CrossRef] [PubMed] [Google Scholar]
  • Lahner B, Gong J, Mahmoudian M, et al. Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 2003; 21: 1215–1221. [CrossRef] [PubMed] [Google Scholar]
  • Lamade E, Setiyo IR, Girard S, Ghashghaie J. Changes in 13C/12C of oil palm leaves to understand carbon use during their passage from heterotrophy to autotrophy. Rapid Comm Mass Spectrom 2009; 23: 2586–2596. [CrossRef] [Google Scholar]
  • Legros S, Mialet-Serra I, Caliman JP, et al. Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability. Ann Bot 2009; 104: 1171–1182. [CrossRef] [PubMed] [Google Scholar]
  • Leung H. Stressed genomics – bringing relief to rice fields. Curr Opin Plant Biol 2008; 11: 201–208. [CrossRef] [PubMed] [Google Scholar]
  • Masura SS, Parveez GK, Ismail I. Isolation and characterization of oil palm constitutive promoter derived from ubiquitin extension protein (uep1) gene. N Biotechnol 2010; 27: 289–299. [CrossRef] [PubMed] [Google Scholar]
  • Mayes S, Parsley K, Sylvester-Bradley R, May S, Foulkes J. Integrating genetic information into plant breeding programmes: how will we produce varieties from molecular variation, using bioinformatics? Ann Appl Biol 2005; 146: 223–237. [CrossRef] [Google Scholar]
  • Mayes S, Stadler F, Basu S et al. Marker assisted selection in plant breeding – generating large datasets for trait analysis. PIPOC 2009 Int. P.O. Cong. Agric. Biotech Sustain Conf 2009; 1: 226–235. [Google Scholar]
  • McLaren JS. Crop biotechnology provides an opportunity to develop a sustainable future. Trends Biotechnol 2005; 23: 339–342. [CrossRef] [PubMed] [Google Scholar]
  • Moll RH, Kamprath EJ, Jackson WA. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 1982; 74: 562–564. [CrossRef] [Google Scholar]
  • Murphy DJ. Future prospects for oil palm in the 21st century: Biological and related challenges. Eur J Lipid Sci Technol 2007; 109: 296–306. [CrossRef] [Google Scholar]
  • NCBI, National Center for Biotecnology Information, 2010. [Google Scholar]
  • Parveez GKA, Masri MM, Zainal A, et al. Transgenic oil palm: production and projection. Biochem Soc Trans 2000; 28: 969–972. [CrossRef] [PubMed] [Google Scholar]
  • Paterson AH, Bowers JE, Bruggmann R, et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009; 457: 551–556. [CrossRef] [PubMed] [Google Scholar]
  • Pennisi E. Plant Genetics: The blue revolution, drop by drop, gene by gene. Science 2008; 320: 171–173. [CrossRef] [PubMed] [Google Scholar]
  • Price AH, Cairns JE, Horton P, Jones HG, Griffiths H. Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and opportunities to integrate stomatal and mesophyll responses. J Exp Bot 2002; 53: 989–1004. [CrossRef] [PubMed] [Google Scholar]
  • Price Z, Mayes S, Billotte N, Hafeez F, Dumortier F, MacDonald D. Oil Palm. In: Kole C ed., Genome Mapping and Molecular Breeding in Plants, Volume 6 Technical Crops. Springer-Verlag Berlin Heidelberg, 2007: 93–108. [CrossRef] [Google Scholar]
  • Rival A. Oil palm. In: Pua EC, Davey MR eds. Biotechnology in agriculture and forestry vol. 61. Berlin: , 2007: 59–80. [Google Scholar]
  • Rival A, Beulé T, Barre P, Duval Y, Hamon S, Noirot M. Comparative flow cytometric estimation of nuclear DNA content in embryogenic calli and seed-derived oil palm (Elaeis guineensis Jacq). Plant Cell Reports 1997; 16: 884–887. [CrossRef] [PubMed] [Google Scholar]
  • Rounsley S, Marri PR, Yu Y, et al. De novo Next Generation Sequencing of plant genomes. Rice 2009; 2: 35–43. [CrossRef] [Google Scholar]
  • Ruffel S, Krouk G, Coruzzi GM. A systems view of responses to nutritional cues in Arabidopsis: towards a Paradigm shift for predictive network modelling, 2009. Plant Physiol 2010; 152: 445–452. [CrossRef] [PubMed] [Google Scholar]
  • Salt DE. Update on plant ionomics. Plant Physiol 2004; 136: 2451–2456. [CrossRef] [PubMed] [Google Scholar]
  • Stone R. Can palm oil plantations come clean? Science 2007; 317: 1491. [CrossRef] [PubMed] [Google Scholar]
  • Syed Alwee S, Van der Linden CG, Van der Schoot J, et al. Characterization of oil palm MADS box genes in relation to the mantled flower abnormality. Plant Cell Tissue Organ Cult 2006; 85: 331–344. [CrossRef] [Google Scholar]
  • Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006; 313: 1596–1604. [CrossRef] [PubMed] [Google Scholar]
  • Wahid MB. Sequencing the oil palm genome: The beginning. PIPOC 2009 Int. P.O. Cong. Agric. Biotech Sustain Conf 2009; 1: 3. [Google Scholar]
  • Walch-Liu P, Liu LH, Remans T, Tetser M, Forde BG. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol 2006; 47: 1045–1057. [CrossRef] [PubMed] [Google Scholar]
  • Wei F, Zhang J, Zhou S, et al. The physical and genetic framework of the Maize B73 Genome. PLoS Genetics 2009; 5: e1000715. [CrossRef] [PubMed] [Google Scholar]
  • Zechendorf B. Sustainable development: how can biotechnology contribute? TIBTECH 2009; 17: 219–225. [CrossRef] [Google Scholar]
  • Zieler H, Richardson T, Schwartz A, et al. Whole-Genome shotgun sequencing of the oil palm and Jatropha genomes. Plant & Animal Genomes XVIII Conference, San Diego, CA, USA, 2010 January 9-13. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.