Issue |
OCL
Volume 31, 2024
Lipids from aquatic environments / Lipides issus des milieux aquatiques
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 13 | |
Section | Technology | |
DOI | https://doi.org/10.1051/ocl/2024019 | |
Published online | 16 October 2024 |
- Altmann B, Rosenau S. 2022. Spirulina as animal feed: opportunities and challenges. Foods, 11(7): 965. [CrossRef] [PubMed] [Google Scholar]
- Andrade AFd, Porto ALF, Bezerra RP. 2022. Photosynthetic microorganisms and their bioactive molecules as new product to healing wounds. Appl Microbiol Biotechnol 106: 497–504. [CrossRef] [PubMed] [Google Scholar]
- Batallera BG, Caparedab SC. 2020. Use of FTIR spectroscopy and PLS-regression in monitoring biomolecules in Spirulina platensis during its growth in an internally-illuminated photobioreactor. CET 80: 103–108. [Google Scholar]
- Bennett A, Bogard L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol 58: 419–435. [CrossRef] [PubMed] [Google Scholar]
- Chaiklahan R, Chirasuwan N, Srinorasing T, Attasat S, Nopharatana A, Bunnag B. 2022. Enhanced biomass and phycocyanin production of Arthrospira (Spirulina) platensis by a cultivation management strategy: Light intensity and cell concentration. Bioresour Technol 343: 126077. [Google Scholar]
- Chen CY, Kao PC, Tsai CJ, Lee DJ, Chang JS. 2013. Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145: 307–312. [CrossRef] [PubMed] [Google Scholar]
- Chen HB, Wu JY, Wang CF, et al. 2010. Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem Eng J 53: 52–56. [CrossRef] [Google Scholar]
- Chen HY, Chiang YF, Huang CY, et al. 2022. Spirulina phycocyanin extract and its active components suppress epithelial-mesenchymal transition process in endometrial cancer via targeting TGF-beta1/SMAD4 signaling pathway. Biomed Pharmacother 152: 113219. [Google Scholar]
- Chofamb A. 2021. Cellular bioenergetics in Spirulina platensis towards growth and phycocyanin production under different photon flux densities using the modified Zarrouk’s medium. TURJAF 9: 28–34. [Google Scholar]
- Cui H, Yang Z, Lu Z, Wang Q, Liu J, Song L. 2019. Combination of utilization of CO2 from flue gas of biomass power plant and medium recycling to enhance cost-effective Spirulina production. J Appl Phycol 31: 2175–2185. [CrossRef] [Google Scholar]
- Dehghani J, Adibkia K, Movafeghi A, et al. 2018. Stable transformation of Spirulina (Arthrospira) platensis: a promising microalga for production of edible vaccines. Appl Microbiol Biotechnol 102: 9267–9278. [CrossRef] [PubMed] [Google Scholar]
- Dejsungkranont M, Chisti Y, Sirisansaneeyakul S. 2017. Simultaneous production of C-phycocyanin and extracellular polymeric substances by photoautotrophic cultures of Arthrospira platensis. J Chem Technol Biotechnol 92: 2709–2718. [Google Scholar]
- Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356. [CrossRef] [Google Scholar]
- George B, Pancha I, Desai C, et al. 2014. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus − a potential strain for bio-fuel production. Bioresour Technol 171: 367–374. [CrossRef] [PubMed] [Google Scholar]
- Glemser M, Heining M, Schmidt J, et al. 2016. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 10: 1077–1088. [CrossRef] [PubMed] [Google Scholar]
- Guldas M, Ziyanok-Demirtas S, Sahan Y, Yildiz E, Gurbuz O. 2020. Antioxidant and anti-diabetic properties of Spirulina platensis produced in Turkey. Food Sci Technol 41: 615–625. [Google Scholar]
- Haghighi M, Zare LB, Ghiasi M. 2022. Biodiesel production from Spirulina algae oil over [Cu(H2PDC)(H2O)2] complex using transesterification reaction: experimental study and DFT approach. Chem Eng J 430: 132777. [Google Scholar]
- Hea X, Wang C, Zhu Y, et al. 2022. Spirulina compounds show hypoglycemic activity and intestinal flora regulation in type 2 diabetes mellitus mice. Algal Res 66: 102791. [Google Scholar]
- Ho SH, Liao JF, Chen CY, Chang JS. 2018. Combining light strategies with recycled medium to enhance the economic feasibility of phycocyanin production with Spirulina platensis. Bioresour Technol 247: 669–675. [CrossRef] [PubMed] [Google Scholar]
- Iamtham S, Sornchai P. 2022. Biofixation of CO2 from a power plant through large-scale cultivation of Spirulina maxima. S Afr J Bot 147: 840–851. [CrossRef] [Google Scholar]
- Jara Adl, Ruano-Rodriguez C, Polifrone M, et al. 2018. Impact of dietary Arthrospira (Spirulina) biomass consumption on human health: main health targets and systematic review. J Appl Phycol 30: 2403–2423. [CrossRef] [Google Scholar]
- Jespersen L, Strømdahl LD, Olsen K, Skibsted LH. 2005. Heat and light stability of three natural blue colorants for use in confectionery and beverages. Eur Food Res Technol 220: 261–266. [CrossRef] [Google Scholar]
- Jin SE, Lee SJ, Park CY. 2020. Mass-production and biomarker-based characterization of high-value Spirulina powder for nutritional supplements. Food Chem 325: 126751. [Google Scholar]
- Konopka A, Schnur M. 1980. Effect of light intensity on macromolecular synthesis in cyanobacteria. Microbial Ecology 6: 291–301. [CrossRef] [PubMed] [Google Scholar]
- Kromkamp J. 1987. Formation and functional significance of storage products in cyanobacteria. N. Z. J Mar Freshw Res 21: 457–465. [CrossRef] [Google Scholar]
- Kumaresan G, Sivakumar K, Singh RLF. 2020. Effect of abiotic factors on the growth of Spirulina Platensis strains. Plant Arch 20: 4259–4263. [Google Scholar]
- Li X, Manuel J, Slavens S, Crunkleton DW, Johannes TW. 2021. Interactive effects of light quality and culturing temperature on algal cell size, biomass doubling time, protein content, and carbohydrate content. Appl Microbiol Biotechnol 105: 587–597. [CrossRef] [PubMed] [Google Scholar]
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275. [CrossRef] [PubMed] [Google Scholar]
- Manirafasha E, Murwanashyaka T, Ndikubwimana T, et al. 2018. Enhancement of cell growth and phycocyanin production in Arthrospira (Spirulina) Platensis by metabolic stress and nitrate fed-batch. Bioresour Technol 225: 293–301. [CrossRef] [PubMed] [Google Scholar]
- Markou G, Kougia E, Kefalogianni I, Tsagou V, Arapoglou D, Chatzipavlidis I . 2019. Effect of glycerol concentration and light intensity on growth and biochemical composition of Arthrospira (Spirulina) platensis: A study in semi-continuous mode with non-aseptic conditions. Appl Sci 9(21): 4703. [Google Scholar]
- Mata SN, Santos TdS, Cardoso LG, et al. 2020. Spirulina sp. LEB 18 cultivation in a raceway-type bioreactor using wastewater from desalination process: production of carbohydrate-rich biomass. Bioresour Technol 311: 123495. [Google Scholar]
- Metsoviti MN, Papapolymerou G, Karapanagiotidis IT, Katsoulas N. 2020. Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. plants 9(1): 31. [PubMed] [Google Scholar]
- Mishra SK, Suh WI, Farooq W, et al. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour Technol 155: 330–333. [CrossRef] [PubMed] [Google Scholar]
- Moon S, Lee Y-J, Choi M-Y, Lee C-G, Park S-J. 2023. Adsorption of heavy metals and bisphenol A from wastewater using Spirulina sp.-based biochar as an effective adsorbent: a preliminary study. J Appl Phycol 35: 2257–2269. [CrossRef] [Google Scholar]
- Niangoran NgUF, Buso D, Zissis G, Prudhomme T. 2021. Influence of light intensity and photoperiod on energy efficiency of biomass and pigment production of Spirulina (Arthrospira platensis). OCL 28: 37. [Google Scholar]
- Niangoran NU, Canale L, Tian F, Haba TC, Zissis G. 2019. Optimal spectrum modeling calculation with light emitting diodes set based on relative quantum efficiency. Acta Hortic 1242: 815–822. [CrossRef] [Google Scholar]
- Niangoran U, Tian F, Canale L, Haba CT, Buso D, Zissis G. 2018. Study of the LEDs spectrums influence on the Spirulina platensis growth in batch culture. In: IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 1–4. Palermo, Italy. [Google Scholar]
- Nomsawai P, Marsac NTd, Thomas JC, Tanticharoen M, Cheevadhanarak S. 1999. Light regulation of phycobilisome structure and gene expression in Spirulina platensis Cl (Arthrospira sp. PCC 9438). Plant Cell Physiol 40: 1194–1202. [CrossRef] [Google Scholar]
- Nzayisenga JC, Farge X, Groll SL, Sellstedt A. 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol Biofuels 13: 4. [PubMed] [Google Scholar]
- Prates DdF, Duarte JH, Vendruscolo RG, et al. 2020. Role of light emitting diode (LED) wavelengths on increase of protein productivity and free amino acid profile of Spirulina sp. cultures. Bioresour Technol 306: 123184. [Google Scholar]
- Prates DdF, Radmann EM, Duarte JH, Morais MGd, Costa JAV. 2018. Spirulina cultivated under different light emitting diodes: enhanced cell growth and phycocyanin production. Bioresour Technol 256: 38–43. [CrossRef] [PubMed] [Google Scholar]
- Ragaza JA, Hossain MS, Meiler KA, Velasquez SF, Kumar V. 2020. A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Rev Aquac 12: 2371–2395. [CrossRef] [Google Scholar]
- Raji AA, Jimoh WA, Bakar NHA, et al. 2020. Dietary use of Spirulina (Arthrospira) and Chlorella instead of fish meal on growth and digestibility of nutrients, amino acids and fatty acids by African catfish. J Appl Phycol 32: 1763–1770. [CrossRef] [Google Scholar]
- Rempel A, Sossella FdS, Margarites AC, et al. 2019. Bioethanol from Spirulina platensis biomass and the use of residuals to produce biomethane: an energy efficient approach. Bioresour Technol 288: 121588. [Google Scholar]
- Ren Y, Sun H, Deng J, Huang J, Chen F. 2021. Carotenoid production from microalgae: biosynthesis, salinity responses and novel biotechnologies. Mar Drugs 19(12): 713. [Google Scholar]
- Si WqS, Gao dL, Wen.hua rL, Qing W, Yong xC, Ling qLXw. 2016. Investigation of main factors affecting the growth rate of Spirulina. Optik 127: 6688–6694. [CrossRef] [Google Scholar]
- Solis.Méndez A, Molina.Quintero M, Rosa EODl, Cantú.Lozano D, Bianchi VLD. 2020. Study of agitation, color and stress light variables on Spirulina platensis culture in vertical stirred reactor in standard medium. Rev Mex Ing Quim 19: 481–490. [Google Scholar]
- Sui Y, Harvey PJ. 2021. Effect of light intensity and wavelength on biomass growth and protein and amino acid composition of Dunaliella Salina. Foods 10(5): 1018. [PubMed] [Google Scholar]
- Tang W, Guo H, Baskin CC, et al. 2022. Effect of light intensity on morphology, photosynthesis and carbon metabolism of alfalfa (Medicago sativa) seedlings. plants 11(13): 1688. [PubMed] [Google Scholar]
- Tosuner ZV, Ürek RÖ. 2020. Evaluation of sucrose as carbon source in mixotrophic culture of Arthrospira platensis Gomont 1892. Aquat Res 3: 1–12. [CrossRef] [Google Scholar]
- Tzachor A, Rozen O, Khatib S, Jensen S, Avni D. 2021. Photosynthetically controlled Spirulina, but not solar Spirulina, inhibits TNFα secretion: potential implications for COVID19 related cytokine storm therapy. Mar Biotechnol 23: 149–155. [CrossRef] [PubMed] [Google Scholar]
- Vo T, Nguyen N, Huynh P, et al. 2017. The growth and lipid accumulation of Spirulina sp. Under different light conditions. World J Food Sci Technol 1: 101–104. [Google Scholar]
- Vonshak A. 1997. Spirulina platensis (Arthrospira): physiology, cell-biology and biotechnology, Taylor & Francis. [CrossRef] [Google Scholar]
- Vonshak A, Tomaselli L. 2000. Arthrospira (Spirulina): systematics and ecophysioiogy, New York: Kluwer Academic Publishers. [Google Scholar]
- Wang Q, Liu W, Li X, Wang R, Zhai J. 2019. Carbamazepine toxicity and its co-metabolic removal by the cyanobacteria Spirulina platensis. Sci Total Environ 706: 135686. [Google Scholar]
- Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144: 307–313. [CrossRef] [Google Scholar]
- Wuang SC, Khin MC, Chua PQD, Luo YD. 2016. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res 15: 59–64. [CrossRef] [Google Scholar]
- Wyman M, Fay P. 1986. Underwater light climate and the growth and pigmentation of planktonic blue-green algae (Cyanobacteria) I. The influence of light quantity. Proc Royal Soc London Ser B, Biolog Sci 227: 367–380. [Google Scholar]
- Xie Y, Jin Y, Zeng X, Chen J, Lu Y, Jing K. 2015. Fed-batch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour Technol 180: 281–287. [CrossRef] [PubMed] [Google Scholar]
- Zarrouk C. 1966. ’Contribution a l’etude d’une Cianophycee : influence de divers facteurs physiques et chimiques sur la croissance et la Photosynthese de Spirulina Maxima (Setch. et Garndner) Geitler’, Université De Paris. [Google Scholar]
- Zhang S, Liu Z. 2021. Advances in the biological fixation of carbon dioxide by microalgae. J Chem Technol Biotechnol 96: 1475–1495. [CrossRef] [Google Scholar]
- Zhu B, Xiao T, HanShen. et al. 2021. Effects of CO2 concentration on carbon fixation capability and production of valuable substances by Spirulina in a columnar photobioreactor. Algal Res 56(2): 102310. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.