Issue |
OCL
Volume 27, 2020
Microbiota, Nutrition and Lipids: consequences on Health
|
|
---|---|---|
Article Number | 31 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/ocl/2020025 | |
Published online | 04 June 2020 |
- Allen AG, Isobe T, Maskell DJ. 1998. Identification and Cloning of waaF (rfaF) from Bordetella pertussis and use to generate mutants of Bordetella spp. with deep rough lipopolysaccharide. J Bacteriol 180: 35–40. [CrossRef] [PubMed] [Google Scholar]
- Amor K, Heinrichs DE, Frirdich E, Ziebell K, Johnson RP, Whitfield C. 2000. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 68: 1116–1124. [CrossRef] [PubMed] [Google Scholar]
- Apicella MA, Coffin J, Ketterer M, et al. 2018. Nontypeable Haemophilus influenzae lipooligosaccharide expresses a terminal ketodeoxyoctanoate in vivo, which can be used as a target for bactericidal antibody. mBio 9: e01401–e01418. Available from https://doi.org/10.1128/mBio.01401-18. [CrossRef] [PubMed] [Google Scholar]
- Bruno JG. 2014. Application of DNA aptamers and quantum dots to lateral flow test strips for detection of foodborne pathogens with improved sensitivity versus colloidal gold. Pathogens 3: 341–355. Available from https://doi.org/10.3390/pathogens3020341. [CrossRef] [PubMed] [Google Scholar]
- Bundle DR, Cherwonogrodzky JW, Caroff M, Perry MB. 1987. The lipopolysaccharides of Brucella abortus and B. melitensis. Ann Inst Pasteur Microbiol 138: 92–98. [PubMed] [Google Scholar]
- Cani PD, Amar J, Iglesias MA, et al. 2007. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772. Available from https://doi.org/10.2337/db06-1491. [CrossRef] [PubMed] [Google Scholar]
- Caroff M, Bundle DR, Perry MB. 1984a. Structure of the O-chain of the phenol-phase soluble cellular lipopolysaccharide of Yersinia enterocolitica serotype O:9. Eur J Biochem 139: 195–200. [CrossRef] [PubMed] [Google Scholar]
- Caroff M, Bundle DR, Perry MB, Cherwonogrodzky JW, Duncan JR. 1984b. Antigenic S-type lipopolysaccharide of Brucella abortus 1119-3. Infect Immun 46: 384–388. [CrossRef] [PubMed] [Google Scholar]
- Caroff M, Karibian D. 2003. Structure of bacterial lipopolysaccharides. Carbohydr Res 338: 2431–2447. [CrossRef] [PubMed] [Google Scholar]
- Chalabaev S, Chauhan A, Novikov A, et al. 2014. Biofilms formed by Gram-negative bacteria undergo increased lipid a palmitoylation, enhancing in vivo survival. mBio 5: e01116–e01114. Available from https://doi.org/10.1128/mBio.01116-14. [CrossRef] [PubMed] [Google Scholar]
- Ciornei CD, Novikov A, Beloin C, et al. 2010. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immun 16: 288–301. Available from https://doi.org/10.1177/1753425909341807. [CrossRef] [PubMed] [Google Scholar]
- Currie CG, Poxton IR. 1999. The lipopolysaccharide core type of Escherichia coli O157:H7 and other non-O157 verotoxin-producing E. coli. FEMS Immunol Med Microbiol 24: 57–62. Available from https://doi.org/10.1111/j.1574-695X.1999.tb01265.x. [Google Scholar]
- d’Hennezel E, Abubucker S, Murphy LO, Cullen TW. 2017. Total lipopolysaccharide from the human gut microbiome silences toll-like receptor signaling. mSystems 2: e00046–17. Available from /msystems/2/6/msys.00046-17.atom, https://doi.org/10.1128/mSystems.00046-17. [PubMed] [Google Scholar]
- Delgado MA, Mouslim C, Groisman EA. 2006. The PmrA/PmrB and RcsC/YojN/RcsB systems control expression of the Salmonella O-antigen chain length determinant. Mol Microbiol 60: 39–50. Available from https://doi.org/10.1111/j.1365-2958.2006.05069.x. [CrossRef] [PubMed] [Google Scholar]
- Elhenawy W, Bording-Jorgensen M, Valguarnera E, Haurat MF, Wine E, Feldman MF. 2016. LPS remodeling triggers formation of outer membrane vesicles in Salmonella. mBio 7. Available from https://doi.org/10.1128/mBio.00940-16. [Google Scholar]
- Endotoxin Detection and Control in Pharma, Limulus, and Mammalian Systems | SpringerLink [WWW Document], n.d. Available from https://link.springer.com/book/10.1007/978-3-030-17148-3 (accessed 2.29.20). [Google Scholar]
- Garidou L, Pomié C, Klopp P, et al. 2015. The gut microbiota regulates intestinal CD4 T cells expressing RORγt and controls metabolic disease. Cell Metab 22: 100–112. Available from https://doi.org/10.1016/j.cmet.2015.06.001. [CrossRef] [PubMed] [Google Scholar]
- Groisman EA. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183: 1835–1842. Available from https://doi.org/10.1128/JB.183.6.1835-1842.2001. [CrossRef] [PubMed] [Google Scholar]
- Gunn JS. 2001. Bacterial modification of LPS and resistance to antimicrobial peptides. J Endotoxin Res 7: 57–62. [CrossRef] [PubMed] [Google Scholar]
- Holst O. 2011. Structure of the lipopolysaccharide core region. In: Bacterial lipopolysaccharides. pp. 21–39. Available from https://doi.org/10.1007/978-3-7091-0733-1_2. [CrossRef] [Google Scholar]
- Holst O, Borowiak D, Weckesser J, Mayer H. 1983. Structural studies on the phosphate-free lipid A of Rhodomicrobium vannielii ATCC 17100. Eur J Biochem 137: 325–332. Available from https://doi.org/10.1111/j.1432-1033.1983.tb07832.x. [CrossRef] [PubMed] [Google Scholar]
- Kamada N, Chen GY, Inohara N, Núñez G. 2013. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14: 685–690. Available from https://doi.org/10.1038/ni.2608. [CrossRef] [PubMed] [Google Scholar]
- Lapaque N, Forquet F, Chastellier CD, et al. 2006. Characterization of Brucella abortus lipopolysaccharide macrodomains as mega rafts. Cell Microbiol 8: 197–206. Available from https://doi.org/10.1111/j.1462-5822.2005.00609.x. [CrossRef] [PubMed] [Google Scholar]
- Lau PCY, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS. 2009. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 191: 6618–6631. Available from https://doi.org/10.1128/JB.00698-09. [CrossRef] [PubMed] [Google Scholar]
- Leung LM, Fondrie WE, Doi Y, et al. 2017. Identification of the ESKAPE pathogens by mass spectrometric analysis of microbial membrane glycolipids. Sci Rep 7. Available from https://doi.org/10.1038/s41598-017-04793-4. [Google Scholar]
- Mayer H, Krauss JH, Urbanik-Sypniewska T, Puvanesarajah V, Stacey G, Auling G. 1989. Lipid A with 2, 3-diamino-2, 3-dideoxy-glucose in lipopolysaccharides from slow-growing members of Rhizobiaceae and from “Pseudomonas carboxydovorans”. Arch Microbiol 151: 111–116. Available from https://doi.org/10.1007/bf00414423. [CrossRef] [PubMed] [Google Scholar]
- Minabe M, Takeuchi K, Kumada H, Umemoto T. 1994. The effect of root conditioning with minocycline HCl in removing endotoxin from the roots of periodontally-involved teeth. J Periodontol 65: 387–392. Available from https://doi.org/10.1902/jop.1994.65.5.387. [CrossRef] [PubMed] [Google Scholar]
- Moran AP, Zähringer U, Seydel U, Scholz D, Stütz P, Rietschel ET. 1991. Structural analysis of the lipid A component of Campylobacter jejuni CCUG 10936 (serotype O:2) lipopolysaccharide. Description of a lipid A containing a hybrid backbone of 2-amino-2-deoxy-D-glucose and 2, 3-diamino-2, 3-dideoxy-D-glucose. Eur J Biochem 198: 459–469. [CrossRef] [PubMed] [Google Scholar]
- Novikov A, Breton A, Caroff M. 2017. Micromethods for isolation and structural characterization of lipid A, and polysaccharide regions of bacterial lipopolysaccharides. Methods Mol Biol 1600: 167–186. Available from https://doi.org/10.1007/978-1-4939-6958-6_16. [CrossRef] [PubMed] [Google Scholar]
- Novikov A, Shah NR, AlBitar-Nehme S, et al. 2014. Complete Bordetella avium, Bordetella hinzii and Bordetella trematum lipid A structures and genomic sequence analyses of the loci involved in their modifications. Innate Immun 20: 659–672. Available from https://doi.org/10.1177/1753425913506950. [CrossRef] [PubMed] [Google Scholar]
- Okamura K, Takata K, Hiraishi A. 2009. Intrageneric relationships of members of the genus Rhodopseudomonas. J Gen Appl Microbiol 55: 469–478. Available from https://doi.org/10.2323/jgam.55.469. [Google Scholar]
- Peng D, Hong W, Choudhury BP, Carlson RW, Gu X-X. 2005. Moraxella catarrhalis bacterium without endotoxin, a potential vaccine candidate. Infect Immun 73: 7569–7577. Available from https://doi.org/10.1128/IAI.73.11.7569-7577.2005. [CrossRef] [PubMed] [Google Scholar]
- Post DMB, Ketterer MR, Coffin JE, et al. 2016. Comparative analyses of the lipooligosaccharides from nontypeable Haemophilus influenzae and Haemophilus haemolyticus show differences in sialic acid and phosphorylcholine modifications. Infect Immun 84: 765–774. Available from https://doi.org/10.1128/IAI.01185-15. [CrossRef] [PubMed] [Google Scholar]
- Qureshi N, Takayama K, Seydel U, et al. 1994. Structural analysis of the lipid A derived from the lipopolysaccharide of Brucella abortus. J Endotoxin Res 1: 137–148. Available from https://doi.org/10.1177/096805199400100303. [Google Scholar]
- Raetz CR. 1990. Biochemistry of endotoxins. Annu Rev Biochem 59: 129–170. Available from https://doi.org/10.1146/annurev.bi.59.070190.001021. [CrossRef] [PubMed] [Google Scholar]
- Raetz CRH, Whitfield C. 2002. Lipopolysaccharide endotoxins. Annu Rev Biochem 71: 635–700. Available from https://doi.org/10.1146/annurev.biochem.71.110601.135414. [CrossRef] [PubMed] [Google Scholar]
- Rau H, Seydel U, Freudenberg M, Weckesser J, Mayer H. 1995. Lipopolysaccharide of the phototrophic bacterium Rhodospirillum fulvum. Syst Appl Microbiol 18: 154–163. Available from https://doi.org/10.1016/S0723-2020(11)80387-5. [Google Scholar]
- Reynolds CM, Kalb SR, Cotter RJ, Raetz CRH. 2005. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. J Biol Chem 280: 21202–21211. Available from https://doi.org/10.1074/jbc.M500964200. [CrossRef] [PubMed] [Google Scholar]
- Richards SM, Strandberg KL, Gunn JS. 2010. Salmonella-regulated lipopolysaccharide modifications. Subcell Biochem 53: 101–122. Available from https://doi.org/10.1007/978-90-481-9078-2_5. [CrossRef] [PubMed] [Google Scholar]
- Rietschel ET, Cavaillon J-M. 2003. Richard Pfeiffer and Alexandre Besredka: creators of the concept of endotoxin and anti-endotoxin. Microbes Infect 5: 1407–1414. Available from https://doi.org/10.1016/j.micinf.2003.10.003. [Google Scholar]
- Schweda EKH, Richards JC, Hood DW, Moxon ER. 2007. Expression and structural diversity of the lipopolysaccharide of Haemophilus influenzae: implication in virulence. Int J Med Microbiol IJMM 297: 297–306. Available from https://doi.org/10.1016/j.ijmm.2007.03.007. [CrossRef] [Google Scholar]
- Shah NR, Albitar-Nehme S, Kim E, et al. 2013. Minor modifications to the phosphate groups and the C3’ acyl chain length of lipid A in two Bordetella pertussis strains, BP338 and 18-323, independently affect Toll-like receptor 4 protein activation. J Biol Chem 288: 11751–11760. Available from https://doi.org/10.1074/jbc.M112.434365. [CrossRef] [PubMed] [Google Scholar]
- Sippel JE, Hanafy HM, Diab AS, Prato C, Arroyo R. 1987. Serodiagnosis of typhoid fever in paediatric patients by anti-LPS ELISA. Trans R Soc Trop Med Hyg 81: 1022–1026. Available from https://doi.org/10.1016/0035-9203(87)90386-5. [CrossRef] [PubMed] [Google Scholar]
- Sonesson A, Jantzen E, Bryn K, Larsson L, Eng J. 1989. Chemical composition of a lipopolysaccharide from Legionella pneumophila. Arch Microbiol 153: 72–78. [CrossRef] [PubMed] [Google Scholar]
- Staub AM, Tinelli R. 1956. Attempted identification of O antigens of Salmonellae by means of periodic oxidation of specific polysaccharides. C R Hebd Seances Acad Sci 243: 1460–1463. [PubMed] [Google Scholar]
- Staub AM, Tinelli R, Luderitz O, Westphal O. 1959. Immunochemical study of Salmonella. V. Role of various sugars, especially 3, 6-bis-desoxyhexoses, in the specificity of Kauffmann-White O antigens. Ann Inst Pasteur 96: 303–332. [Google Scholar]
- Steeghs L, de Cock H, Evers E, Zomer B, Tommassen J, van der Ley P. 2001. Outer membrane composition of a lipopolysaccharide-deficient Neisseria meningitidis mutant. EMBO J 20: 6937–6945. Available from https://doi.org/10.1093/emboj/20.24.6937. [PubMed] [Google Scholar]
- Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P. 1998. Meningitis bacterium is viable without endotoxin. Nature 392: 449–450. Available from https://doi.org/10.1038/33046. [PubMed] [Google Scholar]
- Thursby E, Juge N. 2017. Introduction to the human gut microbiota. Biochem J 474: 1823–1836. Available from https://doi.org/10.1042/BCJ20160510. [CrossRef] [PubMed] [Google Scholar]
- Townsend S, Caubilla Barron J, Loc-Carrillo C, Forsythe S. 2007. The presence of endotoxin in powdered infant formula milk and the influence of endotoxin and Enterobacter sakazakii on bacterial translocation in the infant rat. Food Microbiol 24: 67–74. Available from https://doi.org/10.1016/j.fm.2006.03.009. [CrossRef] [PubMed] [Google Scholar]
- Trent MS. 2004. Biosynthesis, transport, and modification of lipid A. Biochem Cell Biol 82: 71–86. Available from https://doi.org/10.1139/o03-070. [CrossRef] [PubMed] [Google Scholar]
- Trent MS, Stead CM, Tran AX, Hankins JV. 2006. Diversity of endotoxin and its impact on pathogenesis. J Endotoxin Res 12: 205–223. Available from https://doi.org/10.1179/096805106x118825. [PubMed] [Google Scholar]
- Valvano MA, Furlong SE, Patel KB. Genetics, biosynthesis and assembly of O-Antigen. In Knirel YA, Valvano MA, eds. Bacterial lipopolysaccharides: structure, chemical synthesis, biogenesis and interaction with host cells. Vienna: Springer, 2011, pp. 275–310. Available from https://doi.org/10.1007/978-3-7091-0733-1_9. [Google Scholar]
- Velasco J, Moll H, Knirel YA, Sinnwell V, Moriyón I, Zähringer U. 1998. Structural studies on the lipopolysaccharide from a rough strain of Ochrobactrum anthropi containing a 2, 3-diamino-2, 3-dideoxy-D-glucose disaccharide lipid A backbone. Carbohydr Res 306: 283–290. [CrossRef] [PubMed] [Google Scholar]
- Wang A, Molina G, Prima VKW, Wang K. 2011. Anti-LPS test strip for the detection of food contaminated with Salmonella and E. coli. J Microb Biochem Technol 03. Available from https://doi.org/10.4172/1948-5948.1000046. [Google Scholar]
- West NP, Sansonetti P, Mounier J, et al. 2005. Optimization of virulence functions through glucosylation of Shigella LPS. Science 307: 1313–1317. Available from https://doi.org/10.1126/science.1108472. [Google Scholar]
- Yethon JA, Heinrichs DE, Monteiro MA, Perry MB, Whitfield C. 1998. Involvement of waaY, waaQ, andwaaP in the modification of Escherichia coli lipopolysaccharide and their role in the formation of a stable outer membrane. J Biol Chem 273: 26310–26316. Available from https://doi.org/10.1074/jbc.273.41.26310. [CrossRef] [PubMed] [Google Scholar]
- Zähringer U, Knirel YA, Lindner B, et al. 1995. The lipopolysaccharide of Legionella pneumophila serogroup 1 (strain Philadelphia 1): chemical structure and biological significance. Prog Clin Biol Res 392: 113–139. [PubMed] [Google Scholar]
- Zhang-Sun W, Augusto LA, Zhao L, Caroff M. 2015. Desulfovibrio desulfuricans isolates from the gut of a single individual: structural and biological lipid A characterization. FEBS Lett 589: 165–171. Available from https://doi.org/10.1016/j.febslet.2014.11.042. [CrossRef] [PubMed] [Google Scholar]
- Zhang-Sun W, Tercé F, Burcelin R, Novikov A, Serino M, Caroff M. 2018. Structure function relationships in the lipids A from Ralstonia species rising in obese patients. Biochimie 159: 72–80. Available from https://doi.org/10.1016/j.biochi.2019.01.015. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.