Open Access
Review
Issue
OCL
Volume 25, Number 4, July-August 2018
Article Number D404
Number of page(s) 22
Section Lipids & Brain IV: Lipids in Alzheimer’s Disease / Lipids & Brain IV : les lipides dans la maladie d’Alzheimer
DOI https://doi.org/10.1051/ocl/2018027
Published online 04 May 2018
  • Alzheimer’s A. 2015. Alzheimer’s disease facts and figures. Alzheimers Dement 11(3), 332–384. DOI: 10.1016/j.jalz.2015.02.003. [CrossRef] [PubMed] [Google Scholar]
  • An Y, Varma VR, Varma S, et al. 2017. Evidence for brain glucose dysregulation in Alzheimer’s disease. Alzheimers Dement. DOI: 10.1016/j.jalz.2017.09.011. [Google Scholar]
  • Ansoleaga B, Jove M, Schluter A, et al. 2015. Deregulation of purine metabolism in Alzheimer’s disease. Neurobiol Aging 36(1): 68–80. DOI: 10.1016/j.neurobiolaging.2014.08.004. [CrossRef] [PubMed] [Google Scholar]
  • Armirotti A, Basit A, Realini N, et al. 2014. Sample preparation and orthogonal chromatography for broad polarity range plasma metabolomics: application to human subjects with neurodegenerative dementia. Anal Biochem 455: 48–54. [CrossRef] [PubMed] [Google Scholar]
  • Arvanitakis Z, Schneider JA, Wilson RS, et al. 2008. Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology 70(19): 1795–1802. [CrossRef] [PubMed] [Google Scholar]
  • Atkinson AJ, Colburn WA, DeGruttola VG, et al. 2001. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3): 89–95. [CrossRef] [PubMed] [Google Scholar]
  • Beckonert O, Keun HC, Ebbels TMD, et al. 2007. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11): 2692–2703. [CrossRef] [PubMed] [Google Scholar]
  • Bertram L, Tanzi RE. 2008. Thirty years of Alzheimer’s disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci 9(10): 768–778. DOI: 10.1038/nrn2494. [CrossRef] [PubMed] [Google Scholar]
  • Bhattacharyya R, Kovacs DM. 2010. ACAT inhibition and amyloid beta reduction. Bba-Mol Cell Biol L 1801(8): 960–965. [CrossRef] [Google Scholar]
  • Blennow K, Hampel H, Weiner M, Zetterberg H. 2010. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3): 131–144. [CrossRef] [PubMed] [Google Scholar]
  • Botosoa EP, Zhu M, Marbeuf-Gueye C,et al. 2012. NMR metabolomic of frontal cortex extracts: first study comparing two neurodegenerative diseases, Alzheimer disease and amyotrophic lateral sclerosis. Irbm 33(5–6): 281–286. [CrossRef] [Google Scholar]
  • Castillo M, Smith JK, Kwock L. 2000. Correlation of myo-inositol levels and grading of cerebral astrocytomas. Am J Neuroradiol 21(9): 1645–1649. [Google Scholar]
  • Cheng H, Zhou YH, Holtzman DM, Han XL. 2010. Apolipoprotein E mediates sulfatide depletion in animal models of Alzheimer’s disease. Neurobiol Aging 31(7): 1188–1196. [CrossRef] [PubMed] [Google Scholar]
  • Cheng H, Wang M, Li JL, Cairns NJ, Han XL. 2013. Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127(6): 733–738. [CrossRef] [PubMed] [Google Scholar]
  • Corder EH, Saunders AM, Strittmatter WJ, et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261(5123): 921–923. [CrossRef] [PubMed] [Google Scholar]
  • Cui Y, Liu XQ, Wang MQ, et al. 2014. Lysophosphatidylcholine and amide as metabolites for detecting Alzheimer disease using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabonomics. J Neuropath Exp Neur 73(10): 954–963. [CrossRef] [Google Scholar]
  • Cummings J, Aisen PS, DuBois B, et al. 2016. Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 8: 39. DOI: 10.1186/s13195-016-0207-9. [CrossRef] [PubMed] [Google Scholar]
  • Cutler RG, Kelly J, Storie K, et al. 2004. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101(7): 2070–2075. [CrossRef] [Google Scholar]
  • Czech C, Berndt P, Busch K, et al. 2012. Metabolite profiling of Alzheimer’s disease cerebrospinal fluid. Plos One 7(2). [CrossRef] [PubMed] [Google Scholar]
  • Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG. 2004. Magnetic resonance spectroscopic analysis of Alzheimer’s disease mouse brain that express mutant human APP shows altered neurochemical profile. Brain Res 1012(1–2): 60–65. [CrossRef] [PubMed] [Google Scholar]
  • Desai AK, Grossberg GT. 2005. Diagnosis and treatment of Alzheimer’s disease. Neurology 64(12 Suppl 3):S34–S39. [CrossRef] [PubMed] [Google Scholar]
  • Di Paolo G, Kim TW. 2011. Linking lipids to Alzheimer’s disease: cholesterol and beyond. Nat Rev Neurosci 12(8): 284. [CrossRef] [PubMed] [Google Scholar]
  • Dinkins MB, Dasgupta S, Wang GH, Zhu G, Bieberich E. 2014. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer’s disease. Neurobiol Aging 35(8): 1792–1800. [CrossRef] [PubMed] [Google Scholar]
  • Djelti F, Braudeau J, Hudry E, et al. 2015. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain 138(Pt 8): 2383–2398. DOI: 10.1093/brain/awv166. [CrossRef] [PubMed] [Google Scholar]
  • Dobrowsky RT, Kamibayashi C, Mumby MC., Hannun YA. 1993. Ceramide activates heterotrimeric protein phosphatase-2a. J Biol Chem 268(21): 15523–15530. [PubMed] [Google Scholar]
  • Dong S, Duan Y, Hu Y, Zhao Z. 2012. Advances in the pathogenesis of Alzheimer’s disease: a re-evaluation of amyloid cascade hypothesis. Transl Neurodegener 1(1): 18. DOI: 10.1186/2047-9158-1-18. [CrossRef] [PubMed] [Google Scholar]
  • Farrer LA, Cupples LA, Haines JL, et al. 1997. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease – A meta-analysis. Jama-J Am Med Assoc 278(16): 1349–1356. [CrossRef] [PubMed] [Google Scholar]
  • Fehlbaum-Beurdeley P, Sol O, Desire L, et al. 2012. Validation of AclarusDx (TM), a blood-based transcriptomic signature for the diagnosis of Alzheimer’s disease. J Alzheimers Dis 32(1): 169–181. [CrossRef] [PubMed] [Google Scholar]
  • Fiandaca MS, Mapstone ME, Cheema AK, Federoff HJ. 2014. The critical need for defining preclinical biomarkers in Alzheimer’s disease. Alzheimers Dement 10(3 Suppl): S196–S212. DOI: 10.1016/j.jalz.2014.04.015. [CrossRef] [PubMed] [Google Scholar]
  • Filippov V, Song MA, Zhang KL, et al. 2012. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J Alzheimers Dis 29(3): 537–547. DOI: 10.3233/JAD-2011-111202. [CrossRef] [PubMed] [Google Scholar]
  • Foley P. 2010. Lipids in Alzheimer’s disease: a century-old story. Biochim Biophys Acta 1801(8): 750–753. DOI: 10.1016/j.bbalip.2010.05.004. [CrossRef] [PubMed] [Google Scholar]
  • Forster DM, James MF, Williams SR. 2012. Effects of Alzheimer’s disease transgenes on neurochemical expression in the mouse brain determined by 1H MRS in vitro. Nmr in Biomedicine 25(1): 52–58. [CrossRef] [PubMed] [Google Scholar]
  • Fukuhara K, Ohno A, Ota Y, et al. 2013. NMR-based metabolomics of urine in a mouse model of Alzheimer’s disease: identification of oxidative stress biomarkers. J Clin Biochem Nutr 52(2): 133–138. [CrossRef] [PubMed] [Google Scholar]
  • Ghanbari H, Ghanbari K, Beheshti I, Munzar M, Vasauskas A, Averback P. 1998. Biochemical assay for AD7C-NTP in urine as an Alzheimer’s disease marker. J Clin Lab Anal 12(5): 285–288. [CrossRef] [PubMed] [Google Scholar]
  • Godzien J, Ciborowski M, Whiley L, Legido-Quigley C, Ruperez FJ, Barbas C. 2013. In-vial dual extraction liquid chromatography coupled to mass spectrometry applied to streptozotocin-treated diabetic rats. Tips and pitfalls of the method. J Chromatogr A 1304: 52–60. DOI: 10.1016/j.chroma.2013.07.029. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, García-Barrera T, Gómez-Ariza J-L. 2012. Metabolomic approach to Alzheimer’s disease diagnosis based on mass spectrometry. Chem Papers 66(9): 829–835. DOI: 10.2478/s11696-012-0184-9. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia A, Garcia-Barrera T, Barbas C, Gomez-Ariza JL. 2014a. Metabolomic profiling of serum in the progression of Alzheimer’s disease by capillary electrophoresis-mass spectrometry. Electrophoresis 35(23): 3321–3330. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL. 2014b. Combination of metabolomic and phospholipid-profiling approaches for the study of Alzheimer’s disease. J Proteomics 104: 37–47. DOI: 10.1016/j.jprot.2014.01.014. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL. 2014c. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J Pharm Biomed Anal 98: 321–326. DOI: 10.1016/j.jpba.2014.05.023. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2014d. Region-specific metabolic alterations in the brain of the APP/PS1 transgenic mice of Alzheimer’s disease. Bba-Mol Basis Dis 1842(12): 2395–2402. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, García-Barrera T, Gómez-Ariza JL. 2014e. Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal Bioanal Chem 406(28): 7137–7148. DOI: 10.1007/s00216-014-8102-3. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL. 2015a. Application of a novel metabolomic approach based on atmospheric pressure photoionization mass spectrometry using flow injection analysis for the study of Alzheimer’s disease. Talanta 131: 480–489. DOI: 10.1016/j.talanta.2014.07.075. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Gomez-Ariza JL. 2015b. Metabolite profiling for the identification of altered metabolic pathways in Alzheimer’s disease. J Pharmaceut Biomed 107: 75–81. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015c. Application of metabolomics based on direct mass spectrometry analysis for the elucidation of altered metabolic pathways in serum from the APP/PS1 transgenic model of Alzheimer’s disease. J Pharmaceut Biomed 107: 378–385. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015d. Deciphering metabolic abnormalities associated with Alzheimer’s disease in the APP/PS1 mouse model using integrated metabolomic approaches. Biochimie 110: 119–128. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015e. High throughput multiorgan metabolomics in the APP/PS1 mouse model of Alzheimer’s disease. Electrophoresis 36(18): 2237–2249. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015f. Metabolomic investigation of systemic manifestations associated with Alzheimer’s disease in the APP/PS1 transgenic mouse model. Mol Biosyst 11(9): 2429–2440. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015g. Metabolomic research on the role of interleukin-4 in Alzheimer’s disease. Metabolomics 11(5): 1175–1183. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015h. Metabolomic screening of regional brain alterations in the APP/PS1 transgenic model of Alzheimer’s disease by direct infusion mass spectrometry. J Pharmaceut Biomed 102: 425–435. [CrossRef] [Google Scholar]
  • Gonzalez-Dominguez R, Garcia-Barrera T, Vitorica J, Gomez-Ariza JL. 2015i. Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer’s disease. Electrophoresis 36(4): 577–587. [CrossRef] [PubMed] [Google Scholar]
  • Gonzalez-Dominguez R, Ruperez FJ, Garcia-Barrera T, Barbas C, Gomez-Ariza JL. 2016. Metabolomic-driven elucidation of serum disturbances associated with Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 13(6): 641–653. [CrossRef] [PubMed] [Google Scholar]
  • Graham SF, Chevallier OP, Roberts D, Holscher C, Elliott CT, Green BD. 2013a. Investigation of the human brain metabolome to identify potential markers for early diagnosis and therapeutic targets of Alzheimer’s disease. Anal Chem 85(3): 1803–1811. DOI: 10.1021/ac303163f. [CrossRef] [PubMed] [Google Scholar]
  • Graham SF, Holscher C, McClean P, Elliott CT, Green BD. 2013b. H-1 NMR metabolomics investigation of an Alzheimer’s disease (AD) mouse model pinpoints important biochemical disturbances in brain and plasma. Metabolomics 9(5): 974–983. [CrossRef] [Google Scholar]
  • Graham SF, Holscher C, Green BD. 2014. Metabolic signatures of human Alzheimer’s disease (AD): H-1 NMR analysis of the polar metabolome of post-mortem brain tissue. Metabolomics 10(4): 744–753. [CrossRef] [Google Scholar]
  • Graham SF, Chevallier OP, Elliott CT, et al. 2015. Untargeted metabolomic analysis of human plasma indicates differentially affected Polyamine and L-Arginine metabolism in mild cognitive impairment subjects converting to Alzheimer’s disease. Plos One 10(3). [Google Scholar]
  • Greenberg N, Grassano A, Thambisetty M, Lovestone S, Legido-Quigley C. 2009. A proposed metabolic strategy for monitoring disease progression in Alzheimer’s disease. Electrophoresis 30(7): 1235–1239. [CrossRef] [PubMed] [Google Scholar]
  • Guan ZZ, Wang YA, Cairns NJ, Lantos PL, Dallner G, Sindelar PJ. 1999. Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J Neuropath Exp Neur 58(7): 740–747. [CrossRef] [Google Scholar]
  • Hampel H, Frank R, Broich K., et al. 2010. Biomarkers for Alzheimer’s disease: academic, industry and regulatory perspectives. Nat Rev Drug Discov 9(7): 560–574. DOI: 10.1038/nrd3115. [CrossRef] [PubMed] [Google Scholar]
  • Han XL, Holtzman DM, McKeel DW. 2001. Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J Neurochem 77(4): 1168–1180. [CrossRef] [PubMed] [Google Scholar]
  • Han XL, Holtzman DM, McKeel DW, Kelley J, Morris JC. 2002. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82(4): 809–818. [CrossRef] [PubMed] [Google Scholar]
  • Han X, Rozen S, Boyle SH, et al. 2011. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. Plos One 6(7): e21643. DOI: 10.1371/journal.pone.0021643. [CrossRef] [PubMed] [Google Scholar]
  • Han XL, Rozen S, Boyle SH, et al. 2011. Metabolomics in early Alzheimer’s disease: identification of altered plasma sphingolipidome using shotgun lipidomics. Plos One 6(7). [Google Scholar]
  • Hannun YA, Obeid LM. 2002. The ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277(29): 25847–25850. [CrossRef] [PubMed] [Google Scholar]
  • Harris JM, Thompson JC, Gall C, et al. 2015. Do NIA-AA criteria distinguish Alzheimer’s disease from frontotemporal dementia? Alzheimers Dement 11(2): 207–215. [CrossRef] [PubMed] [Google Scholar]
  • Hartmann T, Kuchenbecker J, Grimm MOW. 2007. Alzheimer’s disease: the lipid connection. J Neurochem 103: 159–170. DOI: 10.1111/j.1471-4159.2007.04715.x. [CrossRef] [PubMed] [Google Scholar]
  • He XX, Huang Y, Li B, Gong CX, Schuchman EH. 2010. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging 31(3): 398–408. [CrossRef] [PubMed] [Google Scholar]
  • Hebert LE, Weuve J, Scherr PA, Evans DA. 2013. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80(19): 1778–1783. DOI: 10.1212/WNL.0b013e31828726f5. [CrossRef] [PubMed] [Google Scholar]
  • Heinrich M, Wickel M, Schneider-Brachert W, et al. 1999. Cathepsin D targeted by acid sphingomyelinase-derived ceramide. Embo J 18(19): 5252–5263. [CrossRef] [PubMed] [Google Scholar]
  • Hirsch-Reinshagen V, Maia LF, Burgess BL, et al. 2005. The absence of ABCA1 decreases soluble ApoE levels but does not diminish amyloid deposition in two murine models of Alzheimer disease. J Biol Chem 280(52): 43243–43256. [CrossRef] [PubMed] [Google Scholar]
  • Holmes E, Nicholson JK. 2007. Human metabolic phenotyping and metabolome wide association studies. Ernst Schering Found Symp Proc (4): 227–249. [PubMed] [Google Scholar]
  • Hu LP, Browne ER, Liu T, Angel TE, Ho PC, Chan ECY. 2012. Metabonomic profiling of TASTPM transgenic Alzheimer’s disease mouse model. J Proteome Res 11(12): 5903–5913. [CrossRef] [Google Scholar]
  • Humpel C. 2011. Identifying and validating biomarkers for Alzheimer’s disease. Trends Biotechnol 29(1): 26–32. DOI: 10.1016/j.tibtech.2010.09.007. [CrossRef] [PubMed] [Google Scholar]
  • Hutter-Paier B, Huttunen HJ, Puglielli L, et al. 2010. The ACAT onhibitor CP-113, 818 markedly reduces amyloid pathology in a mouse model of Alzheimer’s disease (vol 44, pg 227, 2004). Neuron 68(5): 1014. DOI: 10.1016/j.neuron.2010.11.028. [CrossRef] [Google Scholar]
  • Hye A, Riddoch-Contreras J, Baird AL, et al. 2014. Plasma proteins predict conversion to dementia from prodromal disease. Alzheimers Dement 10(6): 799–807 e2. DOI: 10.1016/j.jalz.2014.05.1749. [CrossRef] [PubMed] [Google Scholar]
  • Ibanez C, Simo C, Martin-Alvarez PJ, et al. 2012. Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis-mass spectrometry metabolomics. Anal Chem 84(20): 8532–8540. [CrossRef] [PubMed] [Google Scholar]
  • Ibanez C, Simo C, Barupal DK, et al. 2013. A new metabolomic workflow for early detection of Alzheimer’s disease. J Chromatogr A 1302: 65–71. DOI: 10.1016/j.chroma.2013.06.005. [CrossRef] [PubMed] [Google Scholar]
  • Inoue K, Tsutsui H, Akatsu H, et al. 2013. Metabolic profiling of Alzheimer’s disease brains. Sci Rep-Uk 3. [Google Scholar]
  • James BD, Leurgans SE, Hebert LE, Scherr PA, Yaffe K, Bennett DA. 2014. Contribution of Alzheimer disease to mortality in the United States. Neurology 82(12): 1045–1050. [CrossRef] [PubMed] [Google Scholar]
  • Jana A, Pahan K. 2010. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci 30(38): 12676–12689. [CrossRef] [PubMed] [Google Scholar]
  • Janelidze S, Stomrud E, Palmqvist S, et al. 2016. Plasma beta-amyloid in Alzheimer’s disease and vascular disease. Sci Rep-Uk 6. [Google Scholar]
  • Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA. 2000. Statins and the risk of dementia. Lancet 356(9242): 1627–1631. [CrossRef] [PubMed] [Google Scholar]
  • Jukarainen NM, Korhonen SP, Laakso MP, et al. 2008. Quantification of H-1 NMR spectra of human cerebrospinal fluid: a protocol based on constrained total-line-shape analysis. Metabolomics 4(2): 150–160. [CrossRef] [Google Scholar]
  • Kaddurah-Daouk R, Rozen S, Matson W, et al. 2011. Metabolomic changes in autopsy-confirmed Alzheimer’s disease. Alzheimers Dement 7(3): 309–317. [CrossRef] [PubMed] [Google Scholar]
  • Kaddurah-Daouk R, Zhu H, Sharma S, et al. 2013. Alterations in metabolic pathways and networks in Alzheimer’s disease. Transl Psychiat 3. DOI: 10.1038/tp.2013.18. [Google Scholar]
  • Khan TK, Alkon DL. 2010. Early diagnostic accuracy and pathophysiologic relevance of an autopsy-confirmed Alzheimer’s disease peripheral biomarker. Neurobiol Aging 31(6): 889–900. DOI: 10.1016/j.neurobiolaging.2008.07.010. [CrossRef] [PubMed] [Google Scholar]
  • Kim J, Castellano JM, Jiang H, et al. 2009. Overexpression of low-density lipoprotein receptor in the brain markedly inhibits amyloid deposition and increases extracellular a beta clearance. Neuron 64(5): 632–644. [CrossRef] [PubMed] [Google Scholar]
  • Kim M, Nevado-Holgado A, Whiley L, et al. 2016. Association between plasma ceramides and phosphatidylcholines and hippocampal brain volume in late onset Alzheimer’s disease. J Alzheimers Dis. DOI: 10.3233/JAD-160645. [Google Scholar]
  • Kimball BA, Wilson DA, Wesson DW. 2016a. Alterations of the volatile metabolome in mouse models of Alzheimer’s disease. Sci Rep 6: 19495. DOI: 10.1038/srep19495. [CrossRef] [PubMed] [Google Scholar]
  • Kimball BA, Wilson DA, Wesson DW. 2016b. Alterations of the volatile metabolome in mouse models of Alzheimer’s disease. Sci Rep-Uk 6. [Google Scholar]
  • Kivipelto M, Helkala EL, Laakso MP, et al. 2002. Apolipoprotein E epsilon 4 allele, elevated midlife total cholesterol level, and high midlife systolic blood pressure are independent risk factors for late-life Alzheimer disease. Ann Intern Med 137(3): 149–155. [CrossRef] [PubMed] [Google Scholar]
  • Klavins K, Koal T, Dallmann G, Marksteiner J, Kemmler G, Humpel C. 2015. The ratio of phosphatidylcholines to lysophosphatidylcholines in plasma differentiates healthy controls from patients with Alzheimer’s disease and mild cognitive impairment. Alzheimer’s Dement: Diagn Assess Dis Monit 1(3): 295–302. DOI: 0.1016/j.dadm.2015.05.003. [Google Scholar]
  • Klunk WE, Panchalingam K, Moossy J, Mcclure RJ, Pettegrew JW. 1992. N-Acetyl-L-Aspartate and other amino-acid metabolites in Alzheimers-disease brain– A preliminary proton nuclear-magnetic-resonance study. Neurology 42(8): 1578–1585. [CrossRef] [PubMed] [Google Scholar]
  • Knopman DS, DeKosky ST, Cummings JL, et al. 2001. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56(9): 1143–1153. [CrossRef] [PubMed] [Google Scholar]
  • Koal T, Klavins K, Seppi D, Kemmler G, Humpel C. 2015. Sphingomyelin SM(d18:1/18:0) is significantly enhanced in cerebrospinal fluid samples dichotomized by pathological Amyloid-beta(42), Tau, and Phospho-Tau-181 Levels. J Alzheimers Dis 44(4): 1193–1201. [CrossRef] [PubMed] [Google Scholar]
  • Kok E, Haikonen S, Luoto T, et al. 2009. Apolipoprotein E-dependent accumulation of Alzheimer disease-related lesions begins in Middle Age. Ann Neurol 65(6): 650–657. [CrossRef] [PubMed] [Google Scholar]
  • Koldamova R, Staufenbiel M, Lefterov I. 2005. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem 280(52): 43224–43235. [CrossRef] [PubMed] [Google Scholar]
  • Kork F, Holthues J, Hellweg R, et al. 2009. A possible new diagnostic biomarker in early diagnosis of Alzheimer’s disease. Curr Alzheimer Res 6(6): 519–524. [CrossRef] [PubMed] [Google Scholar]
  • Koudinov AR, Koudinova NV. 2001. Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J 15(8): 1858. [CrossRef] [PubMed] [Google Scholar]
  • Kumar P, Dezso Z, MacKenzie C, et al. 2013. Circulating miRNA biomarkers for Alzheimer’s disease. Plos One 8(7). [CrossRef] [Google Scholar]
  • Kuo YM, Emmerling MR, Bisgaier CL, et al. 1998. Elevated low-density lipoprotein in Alzheimer’s disease correlates with brain A beta 1-42 levels. Biochem Bioph Res Co 252(3): 711–715. [CrossRef] [Google Scholar]
  • Laakso MP, Jukarainen NM, Vepsalainen J. 2015. Diagnosis of dementias by high-field H-1 MRS of cerebrospinal fluid. J Neurol Neurosur Ps 86(12): 1286–1290. [Google Scholar]
  • Lalande J, Halley H, Balayssac S, et al. 2014. H-1 NMR metabolomic signatures in five brain regions of the A beta PPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimers Dis 39(1): 121–143. [CrossRef] [PubMed] [Google Scholar]
  • Lambert JC, Schraen-Maschke S, Richard F, et al. 2009. Association of plasma amyloid beta with risk of dementia. The prospective Three-City Study. Neurology 73(11): 847–853. [CrossRef] [PubMed] [Google Scholar]
  • Leidinger P, Backes C, Deutscher S, et al. 2013. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14(7). [CrossRef] [PubMed] [Google Scholar]
  • Li NJ, Liu WT, Li W, et al. 2010a. Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem 43(12): 992–997. [CrossRef] [PubMed] [Google Scholar]
  • Li NJ, Liu WT, Li W, et al. 2010b. Plasma metabolic profiling of Alzheimer’s disease by liquid chromatography/mass spectrometry. Clin Biochem 43(12): 992–997. DOI: 10.1016/j.clinbiochem.2010.04.072. [CrossRef] [PubMed] [Google Scholar]
  • Liang N, Yan XZ, Zhou WX, et al. 2008. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse. J Proteome Res 7(9): 3678–3686. [CrossRef] [Google Scholar]
  • Liang Q, Liu H, Zhang TY, Jiang Y, Xing HT, Zhang AH. 2015. Metabolomics-based screening of salivary biomarkers for early diagnosis of Alzheimer’s disease. Rsc Adv 5(116): 96074–96079. [CrossRef] [Google Scholar]
  • Liang Q, Liu H, Li X, Zhang AH. 2016a. High-throughput metabolomics analysis discovers salivary biomarkers for predicting mild cognitive impairment and Alzheimer’s disease. Rsc Adv 6(79): 75499–75504. [CrossRef] [Google Scholar]
  • Liang Q, Liu H, Zhang TY, Jiang Y, Xing HT, Zhang AH. 2016b. Discovery of serum metabolites for diagnosis of progression of mild cognitive impairment to Alzheimer’s disease using an optimized metabolomics method. Rsc Adv 6(5): 3586–3591. [CrossRef] [Google Scholar]
  • Lin AP, Shic F, Enriquez C, Ross BD. 2003. Reduced glutamate neurotransmission with Alzheimer’s disease – An in vivo C-13 magnetic resonance spectroscopy study. Magn Reson Mater Phy 16(1): 29–42. [CrossRef] [Google Scholar]
  • Lin SH, Liu HD, Kanawati B, et al. 2013. Hippocampal metabolomics using ultrahigh-resolution mass spectrometry reveals neuroinflammation from Alzheimer’s disease in CRND8 mice. Anal Bioanal Chem 405(15): 5105–5117. [CrossRef] [PubMed] [Google Scholar]
  • Lin SH, Kanawati B, Liu LF, et al. 2014. Ultrahigh resolution mass spectrometry-based metabolic characterization reveals cerebellum as a disturbed region in two animal models. Talanta 118: 45–53. [CrossRef] [PubMed] [Google Scholar]
  • Linetti A, Fratangeli A, Taverna E, et al. 2010. Cholesterol reduction impairs exocytosis of synaptic vesicles. J Cell Sci 123(4): 595–605. [CrossRef] [PubMed] [Google Scholar]
  • Liu CC, Kanekiyo T, Xu H, Bu GJ. 2013. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9(4): 184. [PubMed] [Google Scholar]
  • Lopez OL, Kuller LH, Mehta PD, et al. 2008. Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology 70(19): 1664–1671. [CrossRef] [PubMed] [Google Scholar]
  • Lozano J, Berra E, Municio MM, et al. 1994. Protein-Kinase-C-Zeta Isoform is critical for Kappa-B-dependent promoter activation by Sphingomyelinase. J Biol Chem 269(30): 19200–19202. [PubMed] [Google Scholar]
  • Lundstrom SL, Yang HQ, Lyutvinskiy Y, et al. 2014. Blood plasma IgG Fc glycans are significantly altered in Alzheimer’s disease and progressive mild cognitive impairment. J Alzheimers Dis 38(3): 567–579. [CrossRef] [PubMed] [Google Scholar]
  • Lutjohann D, Meichsner S, Pettersson H. 2012. Lipids in Alzheimer’s disease and their potential for therapy. Clin Lipidol 7(1): 65–78. [CrossRef] [Google Scholar]
  • Mapstone M, Cheema AK, Fiandaca MS, et al. 2014. Plasma phospholipids identify antecedent memory impairment in older adults. Nat Med 20(4): 415–418. DOI: 10.1038/nm.3466. [CrossRef] [PubMed] [Google Scholar]
  • Marjanska M, Curran GL, Wengenack TM, et al. 2005. Monitoring disease progression in transgenic mouse models of Alzheimer’s disease with proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 102(33): 11906–11910. [CrossRef] [Google Scholar]
  • Marksteiner J, Kemmler G, Weiss EM, et al. 2011. Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 32(3): 539–540. DOI: 10.1016/j.neurobiolaging.2009.03.011. [CrossRef] [PubMed] [Google Scholar]
  • Mayeux R, Honig LS, Tang MX, et al. 2003. Plasma A beta 40 and A beta 42 and Alzheimer’s disease – Relation to age, mortality, and risk. Neurology 61(9): 1185–1190. [CrossRef] [PubMed] [Google Scholar]
  • McKhann GM, Knopman DS, Chertkow H, et al. 2011. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3): 263–269. [CrossRef] [PubMed] [Google Scholar]
  • Merrill AH Jr., Schmelz EM, Dillehay DL, et al. 1997. Sphingolipids – The enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol Appl Pharmacol 142(1): 208–225. DOI: 10.1006/taap.1996.8029. [CrossRef] [PubMed] [Google Scholar]
  • Mielke MM, Zandi PP, Sjogren M, et al. 2005. High total cholesterol levels in late life associated with a reduced risk of dementia. Neurology 64(10): 1689–1695. [CrossRef] [PubMed] [Google Scholar]
  • Mielke MM, Bandaru VVR, Haughey NJ, et al. 2012. Serum ceramides increase the risk of Alzheimer disease. The Women’s Health and Aging Study II. Neurology 79(7): 633–641. [CrossRef] [PubMed] [Google Scholar]
  • Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD. 1993. Alzheimer-disease – Depiction of increased cerebral myoinositol with proton Mr spectroscopy. Radiology 187(2): 433–437. [CrossRef] [PubMed] [Google Scholar]
  • Mohanakrishnan P, Fowler AH, Vonsattel JP, et al. 1995. An in-vitro H-1 nuclear-magnetic-resonance study of the temporoparietal cortex of Alzheimer brains. Exp Brain Res 102(3): 503–510. [CrossRef] [PubMed] [Google Scholar]
  • Mohanakrishnan P, Fowler AH, Vonsattel JP, et al. 1997. Regional metabolic alterations in Alzheimer’s disease: an in vitro H-1 NMR study of the hippocampus and cerebellum. J Gerontol a-Biol 52(2): B111–B117. [CrossRef] [Google Scholar]
  • Motsinger-Reif AA, Zhu H, Kling MA, et al. 2013. Comparing metabolomic and pathologic biomarkers alone and in combination for discriminating Alzheimer’s disease from normal cognitive aging. Acta Neuropathol Commun 1 28. DOI: 10.1186/2051-5960-1-28. [CrossRef] [PubMed] [Google Scholar]
  • Mulder C, Wahlund LO, Teerlink T, et al. 2003. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J Neural Transm 110(8): 949–955. [CrossRef] [PubMed] [Google Scholar]
  • Myint KT, Aoshima K, Tanaka S, Nakamura T, Oda Y. 2009. Quantitative profiling of polar cationic metabolites in human cerebrospinal fluid by reversed-phase nanoliquid chromatography/mass spectrometry. Anal Chem 81(3): 1121–1129. DOI: 10.1021/ac802259r. [CrossRef] [PubMed] [Google Scholar]
  • Nicholson JK, Holmes E, Lindon JC. Chapter 1 – Metabonomics and metabolomics techniques and their applications in mammalian systems. In: The Handbook of metabonomics and metabolomics. Amsterdam: Elsevier Science B.V., 2007, pp 1–33. [Google Scholar]
  • Nitsch RM, Blusztajn JK, Pittas AG, Slack BE, Growdon JH, Wurtman RJ. 1992. Evidence for a membrane defect in Alzheimer-disease brain. Proc Natl Acad Sci USA 89(5): 1671–1675. [CrossRef] [Google Scholar]
  • O’Bryant SE, Xiao G, Barber R, et al. 2010. A serum protein-based algorithm for the detection of Alzheimer disease. Arch Neurol 67(9): 1077–1081. DOI: 10.1001/archneurol.2010.215. [CrossRef] [PubMed] [Google Scholar]
  • O’Bryant SE, Edwards M, Johnson L, et al. 2016. A blood screening test for Alzheimer’s disease. Alzheimers Dement (Amst) 3: 83–90. DOI: 10.1016/j.dadm.2016.06.004. [PubMed] [Google Scholar]
  • Ohanian J, Ohanian V. 2001. Sphingolipids in mammalian cell signalling. Cell Mol Life Sci 58(14): 2053–2068. [CrossRef] [PubMed] [Google Scholar]
  • Oresic M, Hyotylainen T, Herukka SK, et al. 2011. Metabolome in progression to Alzheimer’s disease. Transl Psychiat 1. [CrossRef] [Google Scholar]
  • Orešič M, Anderson G, Mattila I, et al. 2018. Targeted serum metabolite profiling identifies metabolic signatures in patients with Alzheimer’s disease, normal pressure hydrocephalus and brain tumor. Front Neurosci 11(747). DOI: 10.3389/fnins.2017.00747. [Google Scholar]
  • Paglia G, Stocchero M, Cacciatore S, et al. 2016. Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabolism. J Proteome Res 15(2): 608–618. DOI: 10.1021/acs.jproteome.5b01020. [CrossRef] [Google Scholar]
  • Pan XB, Bin Nasaruddin M, Elliott CT, et al. 2016. Alzheimer’s disease-like pathology has transient effects on the brain and blood metabolome. Neurobiol Aging 38: 151–163. [CrossRef] [PubMed] [Google Scholar]
  • Pedrini S, Carter TL, Prendergast G, Petanceska S, Ehrlich ME, Gandy S. 2005. Modulation of statin-activated shedding of Alzheimer APP ectodomain by ROCK. Plos Med 2(1): 69–78. [CrossRef] [Google Scholar]
  • Peng J, Guo K, Xia JG, et al. 2014. Development of Isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer’s disease. J Proteome Res 13(10): 4457–469. [CrossRef] [Google Scholar]
  • Pettegrew JW, Panchalingam K, Hamilton RL, McClure RJ. 2001. Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 26(7): 771–782. [CrossRef] [PubMed] [Google Scholar]
  • Piro JR, Benjamin DI, Duerr JM, et al. 2012. A dysregulated endocannabinoid-eicosanoid network supports pathogenesis in a mouse model of Alzheimer’s disease. Cell Rep 1(6): 617–623. [CrossRef] [PubMed] [Google Scholar]
  • Prasad MR, Lovell MA, Yatin M, Dhillon H, Markesbery WR. 1998. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem Res 23(1): 81–88. [CrossRef] [PubMed] [Google Scholar]
  • Proitsi P, Lupton MK, Velayudhan L, et al. 2014. Genetic predisposition to increased blood cholesterol and triglyceride lipid levels and risk of Alzheimer disease: a Mendelian randomization analysis. PLoS Med 11(9): e1001713. DOI: 10.1371/journal.pmed.1001713. [CrossRef] [PubMed] [Google Scholar]
  • Proitsi P, Kim M, Whiley L, et al. 2015. Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatr 5: e494. DOI: 10.1038/tp.2014.127. [CrossRef] [Google Scholar]
  • Proitsi P, Kim M, Whiley L, et al. 2017. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimers Dement 13(2): 140–151. DOI: 10.1016/j.jalz.2016.08.003. [CrossRef] [PubMed] [Google Scholar]
  • Psychogios N, Hau DD, Peng J, et al. 2011. The human serum metabolome. Plos One 6(2): e16957. DOI: 10.1371/journal.pone.0016957. [CrossRef] [PubMed] [Google Scholar]
  • Puglielli L, Konopka G, Pack-Chung E, et al. 2001. Acyl-coenzyme A : cholesterol acyltransferase modulates the generation of the amyloid beta-peptide. Nat Cell Biol 3(10): 905–912. [CrossRef] [PubMed] [Google Scholar]
  • Puglielli L, Ellis BC, Saunders AJ, Kovacs DM. 2003. Ceramide stabilizes beta-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid beta-peptide biogenesis. J Biol Chem 278(22): 19777–19783. [CrossRef] [PubMed] [Google Scholar]
  • Raúl G-D, Francisco Javier R, Tamara G-B, Coral B, José Luis G-A. 2016. Metabolomic-driven elucidation of serum disturbances associated with Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 13(6): 641–653. DOI: 10.2174/1567205013666160129095138. [CrossRef] [PubMed] [Google Scholar]
  • Ray S, Britschgi M, Herbert C, et al. 2007a. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11): 1359–1362. [CrossRef] [PubMed] [Google Scholar]
  • Ray S, Britschgi M, Herbert C, et al. 2007b. Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nat Med 13(11): 1359–1362. DOI: 10.1038/nm1653. [CrossRef] [PubMed] [Google Scholar]
  • Reitz C. 2012. Alzheimer’s disease and the amyloid cascade hypothesis: a critical review. Int J Alzheimers Dis 2012: 369808. DOI: 10.1155/2012/369808. [PubMed] [Google Scholar]
  • Reitz C, Tang MX, Luchsinger J, Mayeux R. 2004. Relation of plasma lipids to Alzheimer disease and vascular dementia. Arch Neurol-Chicago 61(5): 705–714. [CrossRef] [Google Scholar]
  • Roberts LD, Souza AL, Gerszten RE, Clish CB. 2012. Targeted metabolomics. Curr Protoc Mol Biol 2(Chapter 30, Unit 30): 1–24. DOI: 10.1002/0471142727.mb3002s98. [Google Scholar]
  • Ryman DC, Acosta-Baena N, Aisen PS, et al. 2014. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta-analysis. Neurology 83(3): 253–260. [CrossRef] [PubMed] [Google Scholar]
  • Salek RM, Xia J, Innes A, et al. 2010. A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 56(8): 937–947. [CrossRef] [PubMed] [Google Scholar]
  • Sato Y, Nakamura T, Aoshima K, Oda Y. 2010. Quantitative and wide-ranging profiling of phospholipids in human plasma by two-dimensional liquid chromatography/mass spectrometry. Anal Chem 82(23): 9858–9864. [CrossRef] [PubMed] [Google Scholar]
  • Sato Y, Suzuki I, Nakamura T, Bernier F, Aoshima K, Oda Y. 2012. Identification of a new plasma biomarker of Alzheimer’s disease using metabolomics technology. J Lipid Res 53(3): 567–576. DOI: 10.1194/jlr.M022376. [CrossRef] [PubMed] [Google Scholar]
  • Satoi H, Tomimoto H, Ohtani R, et al. 2005. Astroglial expression of ceramide in Alzheimer’s disease brains: a role during neuronal apoptosis. Neuroscience 130(3): 657–666. [CrossRef] [PubMed] [Google Scholar]
  • Schuff N, Amend D, Ezekiel F, et al. 1997. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer’s disease – A proton MR spectroscopic imaging and MRI study. Neurology 49(6): 1513–1521. [CrossRef] [PubMed] [Google Scholar]
  • Sepehrnia B, Kamboh MI, Adamscampbell LL, et al. 1989. Genetic-studies of human apolipoproteins.10. The effect of the apolipoprotein-E polymorphism on quantitative levels of lipoproteins in Nigerian blacks. Am J Hum Genet 45(4): 586–591. [Google Scholar]
  • Sharman MJ, Shui GH, Fernandis AZ, et al. 2010. Profiling brain and plasma lipids in human APOE epsilon 2, epsilon 3, and epsilon 4 knock-in mice using electrospray ionization mass spectrometry. J Alzheimers Dis 20(1): 105–111. [CrossRef] [PubMed] [Google Scholar]
  • Shonk TK, Moats RA, Gifford P, et al. 1995. Probable Alzheimer-disease – Diagnosis with proton Mr spectroscopy. Radiology 195(1): 65–72. [CrossRef] [PubMed] [Google Scholar]
  • Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. 1998. Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc Natl Acad Sci USA 95(11): 6460–6464. [CrossRef] [PubMed] [Google Scholar]
  • Slominski A, Wortsman J. 2000. Neuroendocrinology of the skin. Endocr Rev 21(5): 457–487. DOI: 10.1210/edrv.21.5.0410. [PubMed] [Google Scholar]
  • Slominski AT, Zmijewski MA, Skobowiat C, Zbytek B, Slominski RM, Steketee JD. 2012. Sensing the environment: regulation of local and global homeostasis by the skin neuroendocrine system. Adv Anat Embryol Cell Biol 212: v-115. [Google Scholar]
  • Snowden SG, Ebshiana AA, Hye A, et al. 2017. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: A nontargeted metabolomic study. PLoS Med 14(3): e1002266. DOI: 10.1371/journal.pmed.1002266. [CrossRef] [PubMed] [Google Scholar]
  • Snyder HM, Carrillo MC, Grodstein F, et al. 2014. Developing novel blood-based biomarkers for Alzheimer’s disease. Alzheimers Dement 10(1): 109–114. [CrossRef] [PubMed] [Google Scholar]
  • Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Breteler M. 2009. Identifying early markers of Alzheimer’s disease using quantitative multiplex proteomic immunoassay panels. Ann N Y Acad Sci 1180: 56–67. DOI: 10.1111/j.1749-6632.2009.05066.x. [CrossRef] [PubMed] [Google Scholar]
  • Son HH, Lee DY, Seo HS, et al. 2016. Hair sterol signatures coupled to multivariate data analysis reveal an increased 7beta-hydroxycholesterol production in cognitive impairment. J Steroid Biochem Mol Biol 155(Pt A): 9–17. DOI: 10.1016/j.jsbmb.2015.09.024. [CrossRef] [PubMed] [Google Scholar]
  • Sparks DL, Scheff SW, Hunsaker JC 3rd, Liu H, Landers T, Gross DR. 1994. Induction of Alzheimer-like beta-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126(1): 88–94. DOI: 10.1006/exnr.1994.1044. [Google Scholar]
  • Spiegel S, Milstien S. 1995. Sphingolipid metabolites – Members of a new class of lipid 2nd-messengers. J Membrane Biol 146(3): 225–237. [CrossRef] [Google Scholar]
  • Spiegel S, Milstien S. 2002. Sphingosine 1-phosphate, a key cell signaling molecule. J Biol Chem 277(29): 25851–25854. [CrossRef] [PubMed] [Google Scholar]
  • Stokes CE, Hawthorne JN. 1987. Reduced phosphoinositide concentrations in anterior temporal cortex of Alzheimer-diseased brains. J Neurochem 48(4): 1018–1021. [CrossRef] [PubMed] [Google Scholar]
  • Tabert MH, Liu X, Doty RL, et al. 2005. A 10-item smell identification scale related to risk for Alzheimer’s disease. Ann Neurol 58(1): 155–160. DOI: 10.1002/ana.20533. [CrossRef] [PubMed] [Google Scholar]
  • Tajima Y, Ishikawa M, Maekawa K, et al. 2013. Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. Lipids Health Dis 12. [CrossRef] [PubMed] [Google Scholar]
  • Tan L, Yu JT, Liu QY, et al. 2014. Circulating miR-125b as a biomarker of Alzheimer’s disease. J Neurol Sci 336(1–2): 52–56. [CrossRef] [PubMed] [Google Scholar]
  • Tan ZS, Seshadri S, Beiser A, et al. 2003. Plasma total cholesterol level as a risk factor for Alzheimer disease – The Framingham study. Arch Intern Med 163(9): 1053. [CrossRef] [PubMed] [Google Scholar]
  • Tang Z, Liu LF, Li YL, et al. 2016. Urinary metabolomics reveals alterations of aromatic amino acid metabolism of Alzheimer’s disease in the transgenic CRND8 mice. Curr Alzheimer Res 13(7): 764–776. [CrossRef] [PubMed] [Google Scholar]
  • Thies W, Bleiler L, Assoc As. 2013 Alzheimer’s disease facts and figures Alzheimer’s Association. Alzheimers Dement 9(2): 208–245. DOI: 10.1016/j.jalz.2013.02.003. [CrossRef] [PubMed] [Google Scholar]
  • Toledo JB, Shaw LM, Trojanowski JQ. 2013. Plasma amyloid beta measurements – A desired but elusive Alzheimer’s disease biomarker. Alzheimers Res Ther 5(2). [CrossRef] [PubMed] [Google Scholar]
  • Toledo JB, Arnold M, Kastenmuller G, et al. 2017. Metabolic network failures in Alzheimer’s disease – A biochemical road map. Alzheimers Dement. DOI: 10.1016/j.jalz.2017.01.020. [Google Scholar]
  • Trushina E, Nemutlu E, Zhang S, et al. 2012. Defects in mitochondrial dynamics and metabolomic signatures of evolving energetic stress in mouse models of familial Alzheimer’s disease. Plos One 7(2). [CrossRef] [PubMed] [Google Scholar]
  • Trushina E, Dutta T, Persson XM, Mielke MM, Petersen RC. 2013a. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. Plos One 8(5): e63644. DOI: 10.1371/journal.pone.0063644. [CrossRef] [PubMed] [Google Scholar]
  • Trushina E, Dutta T, Persson XMT, Mielke MM, Petersen RC. 2013b. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. Plos One 8(6). [CrossRef] [PubMed] [Google Scholar]
  • Trushina E, Mielke MM. 2014. Recent advances in the application of metabolomics to Alzheimer’s disease. Biochim Biophys Acta 1842(8): 1232–1239. DOI: 10.1016/j.bbadis.2013.06.014. [CrossRef] [PubMed] [Google Scholar]
  • Tsuruoka M, Hara J, Hirayama A, et al. 2013. Capillary electrophoresis-mass spectrometry-based metabolome analysis of serum and saliva from neurodegenerative dementia patients. Electrophoresis 34(19): 2865–2872. [PubMed] [Google Scholar]
  • Vetrivel KS, Thinakaran G. 2010. Membrane rafts in Alzheimer’s disease beta-amyloid production. Bba-Mol Cell Biol L 1801(8): 860–867. [CrossRef] [Google Scholar]
  • von Kienlin M, Kunnecke B, Metzger F, et al. 2005. Altered metabolic profile in the frontal cortex of PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 18(1): 32–39. [CrossRef] [PubMed] [Google Scholar]
  • Vos JP, Lopes-Cardozo M, Gadella BM. 1994. Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211(2): 125–149. [CrossRef] [PubMed] [Google Scholar]
  • Voyle N, Kim M, Proitsi P, et al. 2016. Blood metabolite markers of neocortical amyloid-beta burden: discovery and enrichment using candidate proteins. Transl Psychiatry 6: e719. DOI: 10.1038/tp.2015.205. [CrossRef] [PubMed] [Google Scholar]
  • Wahrle S, Das P, Nyborg AC, et al. 2002. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9(1): 11–23. [CrossRef] [PubMed] [Google Scholar]
  • Wahrle SE, Jiang H, Parsadanian M, et al. 2005. Deletion of Abca1 increases A beta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 280(52): 43236–43242. [CrossRef] [PubMed] [Google Scholar]
  • Walter A, Korth U, Hilgert M, et al. 2004. Glycerophosphocholine is elevated in cerebrospinal fluid of Alzheimer patients. Neurobiol Aging 25(10): 1299–1303. [CrossRef] [PubMed] [Google Scholar]
  • Wang G, Zhou Y, Huang FJ, et al. 2014. Plasma metabolite profiles of Alzheimer’s disease and mild cognitive impairment. J Proteome Res 13(5): 2649–2658. [CrossRef] [Google Scholar]
  • Wang HL, Lian KQ, Han B, et al. 2014. Age-related alterations in the metabolic profile in the hippocampus of the senescence-accelerated mouse prone 8: a spontaneous Alzheimer’s disease mouse model. J Alzheimers Dis 39(4): 841–848. [CrossRef] [PubMed] [Google Scholar]
  • Want EJ, Wilson ID, Gika H, et al. 2010. Global metabolic profiling procedures for urine using UPLC-MS. Nat Protoc 5(6): 1005–1018. [CrossRef] [PubMed] [Google Scholar]
  • Wells K, Farooqui AA, Liss L, Horrocks LA. 1995. Neural membrane phospholipids in Alzheimer disease. Neurochem Res 20(11): 1329–1333. [CrossRef] [PubMed] [Google Scholar]
  • Wengenack TM, Whelan S, Curran GL, Duff KE, Poduslo JF. 2000. Quantitative histological analysis of amyloid deposition in Alzheimer’s double transgenic mouse brain. Neuroscience 101(4): 939–944. [CrossRef] [PubMed] [Google Scholar]
  • Whiley L, Godzien J, Ruperez FJ, Legido-Quigley C, Barbas C. 2012. In-vial dual extraction for direct LC-MS analysis of plasma for comprehensive and highly reproducible metabolic fingerprinting. Anal Chem 84(14): 5992–5999. DOI: 10.1021/ac300716u. [CrossRef] [PubMed] [Google Scholar]
  • Whiley L, Sen A, Heaton J, et al. 2014. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol Aging 35(2): 271–278. [CrossRef] [PubMed] [Google Scholar]
  • Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. 2005. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64(2): 277–281. [CrossRef] [PubMed] [Google Scholar]
  • Wilson I. 2011. Global metabolic profiling (metabonomics/metabolomics) using dried blood spots: advantages and pitfalls. Bioanalysis 3(20): 2255–2257. [CrossRef] [PubMed] [Google Scholar]
  • Wishart DS, Knox C, Guo AC, et al. 2009. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37(Database issue): D603–D610. DOI: 10.1093/nar/gkn810. [CrossRef] [PubMed] [Google Scholar]
  • Wolozin B, Wang SW, Li NC, Lee A, Lee TA, Kazis LE. 2007. Simvastatin is associated with a reduced incidence of dementia and Parkinson’s disease. Bmc Med 5. [CrossRef] [Google Scholar]
  • Woo DC, Lee SH, Lee DW, et al. 2010. Regional metabolic alteration of Alzheimer’s disease in mouse brain expressing mutant human APP-PS1 by H-1 HR-MAS. Behav Brain Res 211(1): 125–131. [CrossRef] [PubMed] [Google Scholar]
  • Wood PL, Barnette BL, Kaye JA, Quinn JF, Woltjer RL. 2015. Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer’s disease subjects. Acta Neuropsychiatr 27(5): 270–278. [CrossRef] [PubMed] [Google Scholar]
  • Wood PL, Locke VA, Herling P, et al. 2016. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer’s disease (LOAD). BBA Clinical 5: 25–28. DOI: 10.1016/j.bbacli.2015.11.004. [CrossRef] [PubMed] [Google Scholar]
  • Wu JF, Fu B, Lei HH, Tang HR, Wang YL. 2016. Gender differences of peripheral plasma and liver metabolic profiling in App/Ps1 transgenic ad mice. Neuroscience 332: 160–169. [CrossRef] [PubMed] [Google Scholar]
  • Xu JS, Begley P, Church SJ, et al. 2016. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: snapshot of a pervasive metabolic disorder. Bba-Mol Basis Dis 1862(6): 1084–1092. [CrossRef] [Google Scholar]
  • Zheng JM, Dixon RA, Li L. 2012. Development of Isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment. Anal Chem 84(24): 10802–10811. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.