Open Access
Volume 24, Number 4, July-August 2017
Article Number D405
Number of page(s) 6
Section Lipids of the future / Lipides du futur
Published online 26 April 2017
  • Aura A-M, Forssell P, Mustranta A, Suortti T, Poutanen K. 1994. Enzymatic hydrolysis of oat and soya lecithin: effects on functional properties. J Am Oil Chem Soc 71: 887–891. [Google Scholar]
  • Bernoud N, Fenart L, Moliere P, et al. 1999. Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in vitro blood-brain barrier over unesterified docosahexaenoic acid. J Neurochem 72: 338–345. [CrossRef] [PubMed] [Google Scholar]
  • Brkić L, Riederer M, Graier WF, Malli R, Frank S. 2012. Acyl chain-dependent effect of lysophosphatidylcholine on cyclooxygenase (COX)-2 expression in endothelial cells. Atherosclerosis 224: 348–354. [CrossRef] [PubMed] [Google Scholar]
  • Cabezas DM, Madoery R, Diehl BWK, Tomás MC. 2012. Emulsifying properties of different modified sunflower lecithins. J Am Oil Chem Soc 89: 355–361. [Google Scholar]
  • Chen S, Li KW. 2007. Mass spectrometric identification of molecular species of phosphatidylcholine and lysophosphatidylcholine extracted from shark liver. J Agric Food Chem 55: 9670–9677. [CrossRef] [PubMed] [Google Scholar]
  • Cmielewski P, Anson DS, Parsons DW. 2010. Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length. Respir Res 11: 84. DOI: 10.1186/1465-9921-11-84. [CrossRef] [PubMed] [Google Scholar]
  • D'Arrigo P, Servi S. 2010. Synthesis of lysophospholipids. Molecules 15: 1354–1377. [CrossRef] [PubMed] [Google Scholar]
  • Devos M, Poisson L, Ergan F, Pencreac'h G. 2006. Enzymatic hydrolysis of phospholipids from Isochrysis galbana for docosahexaenoic acid enrichment. Enzyme Microb Technol 39: 548–554. [Google Scholar]
  • Fan L, Yin M, Ke C, et al. 2016. Use of plasma metabolomics to identify diagnostic biomarkers for early stage epithelial ovarian cancer. J Cancer 7: 1265–1272. [CrossRef] [PubMed] [Google Scholar]
  • Farkas T, Kitajka K, Fodor E, et al. 2000. Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc Natl Acad Sci 97: 6362–6366. [CrossRef] [Google Scholar]
  • Ghosh M, Bhattacharyya DK. 1997. Enzymatic alcoholysis reaction of soy phospholipids. J Am Oil Chem Soc 74: 597–599. [Google Scholar]
  • Grzelczyk A, Gendaszewska-Darmach E. 2013. Novel bioactive glycerol-based lysophospholipids: new data − new insight into their function. Biochimie 95: 667–679. [CrossRef] [PubMed] [Google Scholar]
  • Gutiérrez-Ayesta C, Carelli AA, Ferreira ML. 2007. Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme Microb Technol 41: 35–43. [EDP Sciences] [Google Scholar]
  • Haas M, Scott K, Jun W, Janssen G. 1994. Enzymatic phosphatidylcholine hydrolysis in organic solvents: an examination of selected commercially available lipases. J Am Oil Chem Soc 71: 483–490. [Google Scholar]
  • Han JJ, Rhee JS. 1995. Lipase-catalyzed synthesis of lysophosphatidic acid in a solvent free system. Biotechnol Lett 17: 531–536. [Google Scholar]
  • Han JJ, Rhee JS. 1998. Effect of salt hydrate pairs for water activity control on lipase-catalyzed synthesis of lysophospholipids in a solvent-free system. Enzyme Microb Technol 22: 158–164. [Google Scholar]
  • Hara F, Nakashima T, Fukuda H. 1997. Comparative study of commercially available lipases in hydrolysis reaction of phosphatidylcholine. J Am Oil Chem Soc 74: 1129–1132. [Google Scholar]
  • Haraldsson GG, Thorarensen A. 1999. Preparation of phospholipids highly enriched with n-3 polyunsaturated fatty acids by lipase. J Am Oil Chem Soc 76: 1143–1149. [Google Scholar]
  • Hong SI, Kim Y, Kim C-T, Kim I-H. 2011. Enzymatic synthesis of lysophosphatidylcholine containing CLA from sn-glycero-3-phosphatidylcholine (GPC) under vacuum. Food Chem 129: 1–6. [Google Scholar]
  • Hosokawa M, Ono M, Takahashi K, Inoue Y. 1998. Increase in deformability of human erythrocytes through the action of β-lysophospholipid rich in n-3 polyunsaturated fatty acid content. J Jpn Oil Chem Soc 47: 1313–1318. [CrossRef] [Google Scholar]
  • Huang LS, Hung ND, Sok D-E, Kim MR. 2010. Lysophosphatidylcholine containing docosahexaenoic acid at the sn-1 position is anti-inflammatory. Lipids 45: 225–236. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Hung ND, Kim MR, Sok D-E. 2011. 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in Zymosan A-induced peritonitis in mice. Lipids 46: 893–906. [CrossRef] [PubMed] [Google Scholar]
  • Kapoor M, Gupta MN. 2012. Lipase promiscuity and its biochemical applications. Process Biochem 47: 555–569. [Google Scholar]
  • Kasinos M, Goñi ML, Nguyen MT, et al. 2014. Effect of hydrolysed sunflower lecithin on the heat-induced coagulation of recombined concentrated milk emulsions. Int Dairy J 38: 187–194. [Google Scholar]
  • Kim J, Kim BG. 1998. Lipase-catalyzed synthesis of lysophosphatidylcholine. Ann N Y Acad Sci 864: 341–344. [Google Scholar]
  • Kim J, Kim BG. 2000. Lipase-catalyzed synthesis of lysophosphatidylcholine using organic cosolvent for in situ water activity control. J Am Oil Chem Soc 77: 791–797. [Google Scholar]
  • Kim J, Lee CS, Oh J, Kim BG. 2001. Production of egg yolk lysolecithin with immobilized phospholipase A2. Enzyme Microb Technol 29: 587–592. [Google Scholar]
  • Koklic T, Trancar J. 2012. Lysolipid containing liposomes for transendothelial drug delivery. BMC Res Notes 5: 179. DOI: 10.1186/1756-0500-5-179. [PubMed] [Google Scholar]
  • Lagarde M, Hachem M, Bernoud-Hubac N, Picq M, Véricel E, Guichardant M. 2015. Biological properties of a DHA-containing structured phospholipid (AceDoPC) to target the brain. Prostaglandins Leukot Essent Fat Acids 92: 63–65. [CrossRef] [Google Scholar]
  • Lin M-E, Herr DR, Chun J. 2010. Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. Prostaglandins Other Lipid Mediat 91: 130–138. [PubMed] [Google Scholar]
  • Ono M, Hosokawa M, Inoue Y, Takahashi K. 1997. Water activity-adjusted enzymatic partial hydrolysis of phospholipids to concentrate polyunsaturated fatty acids. J Am Oil Chem Soc 74: 1415–1417. [Google Scholar]
  • Pencreac'h G, Ergan F, Poisson L. 2013. DHA-lysophospholipid production. Curr Org Chem 17: 793–801. [Google Scholar]
  • Plückthun A, Dennis EA. 1982. Acyl andphosphoryl migration in lysophospholipids: importance in phospholipid synthesis and phospholipase specificity. Biochemistry (Mosc) 21: 1743–1750. [Google Scholar]
  • Poisson L, Devos M, Godet S, Ergan F, Pencreac'h G. 2009. Acyl migration during deacylation of phospholipids rich in docosahexaenoic acid (DHA): an enzymatic approach for evidence and study. Biotechnol Lett 31: 743–749. [CrossRef] [PubMed] [Google Scholar]
  • Rao SP, Riederer M, Lechleitner M, et al. 2013. Acyl chain-dependent effect of lysophosphatidylcholine on endothelium-dependent vasorelaxation. PLoS ONE 8: e65155. DOI: 10.1371/journal.pone.0065155. [Google Scholar]
  • Riederer M, Ojala PJ, Hrzenjak A, et al. 2010. Acyl chain-dependent effect of lysophosphatidylcholine on endothelial prostacyclin production. J Lipid Res 51: 2957–2966. [CrossRef] [PubMed] [Google Scholar]
  • Sarney DB, Fregapane G, Vulfson EN. 1994. Lipase-catalyzed synthesis of lysophospholipids in a continuous bioreactor. J Am Oil Chem Soc 71: 93–96. [Google Scholar]
  • Stergiou P-Y, Foukis A, Filippou M, et al. 2013. Advances in lipase-catalyzed esterification reactions. Biotechnol Adv 31: 1846–1859. [CrossRef] [PubMed] [Google Scholar]
  • Tsushima T, Matsubara K, Ohkubo T, Inoue Y, Takahashi K. 2012. Docosahexaenoic- and eicosapentaenoic acid-bound lysophospholipids are more effective in suppressing angiogenesis than conjugated docosahexaenoic acid. J Oleo Sci 61: 427–432. [CrossRef] [PubMed] [Google Scholar]
  • Valentine WJ, Fujiwara Y, Tsukahara R, Tigyi G. 2008. Lysophospholipid signaling: beyond the EDGs. Biochim Biophys Acta − Gen Subj 1780: 597–605. [CrossRef] [Google Scholar]
  • Vikbjerg AF, Mu H, Xu X. 2005. Parameters affecting incorporation and by-product formation during the production of structured phospholipids by lipase-catalyzed acidolysis in solvent-free system. J Mol Catal B Enzym 36: 14–21. [Google Scholar]
  • Virto C, Adlercreutz P. 2000. Lysophosphatidylcholine synthesis with Candida antarctica lipase B (Novozym 435). Enzyme Microb Technol 26: 630–635. [CrossRef] [PubMed] [Google Scholar]
  • Virto C, Svensson I, Adlercreutz P. 1999. Enzymatic synthesis of lysophosphatidic acid and phosphatidic acid. Enzyme Microb Technol 24: 651–658. [Google Scholar]
  • Yahagi S, Koike M, Okano Y, Masaki H. 2011. Lysophospholipids improve skin moisturization by modulating of calcium-dependent cell differentiation pathway. Int J Cosmet Sci 33: 251–256. [Google Scholar]
  • Yang G, Yang R, Hu H. 2015. Lysophosphatidylcholine synthesis by lipase-catalyzed ethanolysis. J Oleo Sci 64: 443–447. [CrossRef] [PubMed] [Google Scholar]
  • Zhao Z, Xiao Y, Elson P, et al. 2007. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer. J Clin Oncol 25: 2696–2701. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.