Open Access
Issue
OCL
Volume 23, Number 2, March-April 2016
Article Number A202
Number of page(s) 8
Section Innovation
DOI https://doi.org/10.1051/ocl/2015052
Published online 22 October 2015
  • Alvarez HM, Steinbuchel A. 2002. Triacylglycerols in prokaryotic microorganisms. Appl. Microbiol. Biot. 60: 367–376. [CrossRef] [Google Scholar]
  • Alvarez HM, Mayer F, Fabritius D, Steinbuchel A. 1996. Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch. Microbiol. 165: 377–386. [CrossRef] [PubMed] [Google Scholar]
  • Antai SP, Crawford DL. 1981. Degradation of softwood, hardwood, and grass lignocelluloses by two streptomyces strains. Appl. Environ. Microb. 42: 378–80. [Google Scholar]
  • Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. 2008. Multiple pathways for triacylglycerol biosynthesis in Streptomyces coelicolor. Appl. Environ. Microbiol. 74: 2573–2582. [CrossRef] [PubMed] [Google Scholar]
  • Arabolaza A, D’Angelo M, Comba S, Gramajo H. 2010. FasR, a novel class of transcriptional regulator, governs the activation of fatty acid biosynthesis genes in Streptomyces coelicolor. Mol. Microbiol. 78: 47–63. [PubMed] [Google Scholar]
  • Blazeck J, Hill A, Liu L, et al. 2014. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nat. Commun. 5: 3131. [PubMed] [Google Scholar]
  • Boon E, Struik PC, Engels FM, Cone JW. 2012. Stem characteristics of two forage maize (Zea mays L.) cultivars varying in whole plant digestibility. IV. Changes during the growing season in anatomy and chemical composition in relation to fermentation characteristics of a lower internode. NJAS-Wagen. J. Life Sci. 59: 13–23. [CrossRef] [Google Scholar]
  • Caparrós S, Ariza J, López F, Nacimiento JA, Garrote G, Jiménez L. 2008. Hydrothermal treatment and ethanol pulping of sunflower stalks. Bioresource Technol. 99: 1368–1372. [CrossRef] [Google Scholar]
  • Comba S, Menendez-Bravo S, Arabolaza A, Gramajo H. 2013. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor. Microb. Cell. Fact. 12: 9. [CrossRef] [PubMed] [Google Scholar]
  • Coze F, Gilard F, Tcherkez G, Virolle MJ, Guyonvarch A. 2013. Carbon-flux distribution within Streptomyces coelicolor metabolism: A comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLoS One 8: e84151. [CrossRef] [PubMed] [Google Scholar]
  • Crawford DL. 1978. Lignocellulose decomposition by selected streptomyces strains. Appl. Environ. Microbiol. 35: 1041–1045. [PubMed] [Google Scholar]
  • Davis JR, Sello JK. 2010. Regulation of genes in Streptomyces bacteria required for catabolism of lignin-derived aromatic compounds. Appl. Microbiol. Biot. 86: 921–929. [CrossRef] [PubMed] [Google Scholar]
  • Davis JR, Goodwin LA, Woyke T et al. 2012. Genome sequence of Amycolatopsis sp. strain ATCC 39116, a plant biomass-degrading actinomycete. J. Bact. 194: 2396–2397. [CrossRef] [Google Scholar]
  • Dence CW, Lin SY. The determination of lignin. In: Lin SY, Dence CW, eds.. Methods in Lignin Chemistry. Heidelberg: Springer Verlag, 1992, pp. 33–61. [Google Scholar]
  • Deniset-Besseau A, Prater CB, Virolle MJ, Dazzi A. 2014. Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications. J. Phys. Chem. Let.t 5: 654–658. [CrossRef] [Google Scholar]
  • Garay LA, Boundy-Mills KL, German JB. 2014. Accumulation of high-value lipids in single-cell microorganisms: A mechanistic approach and future perspectives. J. Agr. Food. Chem. 62: 2709–2727. [CrossRef] [Google Scholar]
  • Guerra A, Elissetche JP, Norambuena M, et al. 2008. Influence of lignin structural features on eucalyptus globulus kraft pulping. Ind. Eng. Chem. Res. 47: 8542–8549. [CrossRef] [Google Scholar]
  • Jung HG, Casler MD. 2006. Maize stem tissues. Crop. Sci. 46: 1793–1800. [CrossRef] [Google Scholar]
  • Kang KE, Jeong GT, Park DH. 2012. Pretreatment of rapeseed straw by sodium hydroxide. Bioproc. Biosyst. Eng. 35: 705–713. [CrossRef] [Google Scholar]
  • Kosa M, Ragauskas AJ. 2012. Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl. Microbiol. Biot. 93: 891–900. [CrossRef] [Google Scholar]
  • Kurosawa K, Wewetzer SJ, Sinskey AJ. 2013. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol. Biofuels. 6: 134. [CrossRef] [PubMed] [Google Scholar]
  • Lapierre C, Pollet B, Rolando C. 1995. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res. Chem. Intermed. 21: 397–412. [CrossRef] [Google Scholar]
  • Le Marechal P, Decottignies P, Marchand CH, et al. 2013. Comparative proteomic analysis of streptomyces lividans wild-type and ppk mutant strains reveals the importance of storage lipids for antibiotic biosynthesis. Appl. Environ. Microb. 79: 5907–5917. [CrossRef] [Google Scholar]
  • Liu Y, Zhang C, Shen X, et al. 2013. Microorganism lipid droplets and biofuel development. BMB. Rep. 46: 575–581. [CrossRef] [PubMed] [Google Scholar]
  • Mathews SL, Pawlak J, Grunden AM. 2015. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl. Microbiol. Biotechnol. 99: 2939–2954 [CrossRef] [PubMed] [Google Scholar]
  • Mazhari Mousavi SM, Hosseini SZ, Resalati H, Mahdavi S, Garmaroody RE. 2013. Papermaking potential of rapeseed straw, a new agricultural-based fiber source. J. Clean. Prod. 52: 420–424. [CrossRef] [Google Scholar]
  • Menon V, Rao M. 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy. Combust. 38: 522–550. [CrossRef] [Google Scholar]
  • Mood HS, Golfeshan AH, Tabatabaei M, et al. 2013. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 27: 77–93. [CrossRef] [Google Scholar]
  • Octave S, Thomas D. 2009. Biorefinery: Toward an industrial metabolism. Biochimie 91: 659–64. [CrossRef] [PubMed] [Google Scholar]
  • Olukoshi ER, Packter NM. 1994. Importance of stored triacylglycerols in Streptomyces: Possible carbon source for antibiotics. Microbiology 140: 931–943. [CrossRef] [PubMed] [Google Scholar]
  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP. 2010. Feedstocks for Lignocellulosic Biofuels. Science 329: 790–792 [CrossRef] [PubMed] [Google Scholar]
  • Vetrovsky T, Steffen KT, Baldrian P. 2014. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. PLoS One 9: e89108. [CrossRef] [PubMed] [Google Scholar]
  • Xiong X, Wang X, Chen S. 2012. Engineering of a xylose metabolic pathway in Rhodococcus strains. Appl. Environ. Microbiol. 78: 5483–5491. [CrossRef] [PubMed] [Google Scholar]
  • Zhang Y, Culhaoglu T, Pollet B, et al. 2011. Impact of lignin structure and cell wall reticulation on maize cell wall degradability. J. Agr. Food. Chem. 59: 10129–10135. [CrossRef] [Google Scholar]
  • Zhao XB, Zhang LH, Liu DH. 2012. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefining 6: 465–482. [CrossRef] [Google Scholar]
  • Ziebell AL, Barb JG, Sandhu S, et al. 2013. Sunflower as a biofuels crop: An analysis of lignocellulosic chemical properties. Biomass. Bioenergy 59: 208–217. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.