Open Access
Volume 22, Number 3, May-June 2015
Article Number D303
Number of page(s) 10
Section Dossier: Rapeseed: some examples of current french research Colza / quelques exemples de recherche en France
Published online 01 May 2015
  • Albrecht S, Möllers C, Röbbelen G. 1995. Selection in vitro for erucic-acid content in segregating populations of microspore-derived embryoids of Brassica napus. Plant Breed. 114: 210–214. [CrossRef] [Google Scholar]
  • Anonyme. 1998. Le colza érucique sur la bonne voie. Agra valor 49. [Google Scholar]
  • Becker HC, Engqvist G, Karlsson B. 1995. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor. Appl. Genet. 91: 62–67. [CrossRef] [PubMed] [Google Scholar]
  • Bernerth R, Frentzen M. 1990. Utilization of erucoyl-COA by acyltransferases from developing seeds of Brassica napus (L.) involved in triacylglycerol biosynthesis. Plant Sci. 67: 21–28 [CrossRef] [Google Scholar]
  • Brough CL, Coventry JM, Christie W, Kroon JTM, Brown AP, Barsby TL, Slabas AR. 1996. Towards the genetic engineering of triacylglycerols of defined fatty acid composition: major changes in erucic acid content at the sn-2-position affected by the introduction of a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii into oil seed rape. Mol. Breed. 2: 133–142. [CrossRef] [Google Scholar]
  • Brown AP, Brough CL, Kroon JTM, Slabas AR. 1995. Identification of a cDNA that encodes a 1-acyl-snglycerol-3-phosphate from Limnanthes douglassii. Plant Mol. Biol. 29: 267–278. [CrossRef] [PubMed] [Google Scholar]
  • Cassagne C, Lessire R, Bessoule JJ, Moreau P, Creach A, Schneider F, Sturbois B. 1994. Biosynthesis of very long chain fatty acids in higher plants. Prog. Lipid Res. 33: 55–69. [CrossRef] [PubMed] [Google Scholar]
  • Chen YB, Heneen WK. 1989. Resynthesized Brassica napus L.: a review of its potential in breeding and genetic analysis. Hereditas 111: 255–263. [CrossRef] [Google Scholar]
  • Chen ZZ, Snyder S, Fan ZG, Loh WH. 1994. Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breed. 113: 217–221. [CrossRef] [Google Scholar]
  • Cheung WY, Landry BS, Raney P, Rakow GFW. 1998. Molecular mapping of seed quality traits in Brassica juncea L. czern. and Coss. In: Proceedings of the International Symposium on Brassicas, Grégoire T, Antonio A (Eds.). Monteiro. Acta Hortic. 459: 139–146. [Google Scholar]
  • Coleman J. 1990. Characterization of Escherichia coli cells deficient in 1-acyl-sn-glycerol-3-phosphate acyltransferase activity. J. Biol. Chem. 265: 17215–17221. [PubMed] [Google Scholar]
  • Coleman J. 1992. Characterization of the Escherichia coli gene for 1-acyl-sn-glycerol-3-phosphate acyltransferase (plsC). Mol. Gen. Genet. 232: 295–303. [PubMed] [Google Scholar]
  • Creach A, Lessire R, Cassagne C. 1993. Kinetics of C18:1-CoA elongation and transacylation in rapeseeds. Plant Physiol. Biochem. 31: 923–930. [Google Scholar]
  • Creach A, Lessire R. 1993a. Solubilization and partiel purification of the acyl-CoA elongase from developing rapeseed s (Brassica napus L.). Grasas y aceites 44: 120–122. [Google Scholar]
  • Creach A, Lessire R. 1993b. Solubilisation of acyl-CoA elongase from developing rapeseed (Brassica napus L.). J. Am. Oil Chem. Soc. 70: 1129–1133. [CrossRef] [Google Scholar]
  • Downey RK, Taylor DC. 1996. Diversification of canola/rapeseed fatty acid supply for the year 2000. OCL 3: 9–13. [Google Scholar]
  • Ecke W, Uzunova M, Weisslder K. 1995. Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor. Appl. Genet. 91: 972–977. [PubMed] [Google Scholar]
  • Engqvist GM, Becker HC. 1994. What can resynthesized Brassica napus offer to plant breeding? Sver. Utsadesfdern. Tidskr. 104: 87–92. [Google Scholar]
  • Fahleson J, Eriksson I, Landgren M, Stymne S, Glimelius K. 1994. Intertribal somatic hybrids between Brassica napus and Thlaspi perfoliatum with high content of the T. perfoliatum-specific nervonic acid. Theor. Appl. Genet. 87: 795–804. [CrossRef] [PubMed] [Google Scholar]
  • Fatland BL, Ke J, Anderson MD, et al. 2002. Molecular characterization of a heteromorphic ATP-citrate lyase that generates cytosolic acetyl- Coenzyme-A in Arabidopsis. Plant Physiol. 130: 740–756. [CrossRef] [PubMed] [Google Scholar]
  • Forsberg J, Landgren M, Glimelius K. 1994. Fertile somatic hybrids between Brassica napus and Arabidopsis thaliana. Plant Sci. 95: 213–223. [CrossRef] [Google Scholar]
  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D. 1998. The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor. Appl. Genet. 96: 852–858. [CrossRef] [Google Scholar]
  • Frentzen M. 1998. Acyltransferases from basic science to modified new oil crops – Gentechnische Herstellung und Züchtung neuer Ölsaaten/Engineering and breeding new oil crops. Fett/Lipid 100: 161–166. [CrossRef] [Google Scholar]
  • Friedt W, Lühs W. Development in the breeding of rapeseed oil for industrial purposes. In: Rapeseed today and tomorrow. Cambridge: Cambridge University Press, 1995, 437–448. [Google Scholar]
  • Friedt W, Lühs W. 1998. Recent development and perspectives of industrial rapeseed breeding. Fett/Lipid 100: 219–226. [CrossRef] [Google Scholar]
  • Han J, Lühs W, Sonntag K, et al. 2001. Functional characterization of b-Ketoacyl-CoA Synthase genes from Brassica napus L. Plant Mol. Biol. 46: 229–239. [Google Scholar]
  • Hanke C, Wolter FP, Coleman J, Peterek G, Frentzen M. 1995. A plant acyltransferase involved in triacylglycerols biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. Eur. J. Biochem. 232: 806–810. [CrossRef] [PubMed] [Google Scholar]
  • Harvey BL, Downey RK. 1964. The inheritance of erucic acid content in rapeseed (Brassica napus). Can. J. Plant Sci. 44: 104–111. [CrossRef] [Google Scholar]
  • Heath DW, Earle ED. 1995. Synthesis of high erucic acid rapeseed (Brassica napus L.) somatic hybrids with improved agronomic characters. Theor. Appl. Genet. 91: 1129–1136. [PubMed] [Google Scholar]
  • Iqbal MCM, Möllers C, Röbbelen G. 1994. Increased embryogenesis after colchicine treatment of microspore cultures of B. napus. J. Plant Physiol. 143: 222–226. [CrossRef] [Google Scholar]
  • James DW, Lim E, Keller J, Plooy I, Ralston E, Dooner HK. 1995. Directed tagging of the Arabidopsis fatty acid elongation 1 (fae1) gene with the maize transposon activator. Plant Cell. 7: 309–319. [CrossRef] [PubMed] [Google Scholar]
  • Jönsson R. 1977. Erucic acid heredity in rapeseed (Brassica napus L. and Brassica campestris L). Hereditas 86: 159–170. [CrossRef] [Google Scholar]
  • Jourdren C, Barret P, Horvais R, Foisset N, Delourme R, Renard M. 1996. Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol. Breed. 2: 61–71. [CrossRef] [Google Scholar]
  • Katavic V, Friesen W, Barton DL, et al. 2000. Utility of the Arabidopsis FAE1 and yeast SLC1-1 genes for improvements in erucic acid and oil content in rapeseed. Biochem. Soc. Trans. 28: 935–937. [CrossRef] [PubMed] [Google Scholar]
  • Katavic V, Friesen W, Barton DL, et al. 2001. Improving erucic acid content in rapeseed through biotechnology: What can the Arabidopsis FAE1 and the yeast SLC1-1 genes contribute? Crop. Sci. 41: 739–747. [CrossRef] [Google Scholar]
  • Ke J, Behal RH, Yunkers S, Nikolau BJ, Wurtele ES, Oliver DJ. 2000. The role of pyruvate dehydrogenase and acetyl-CoA synthetase in fatty acid synthesis in developing Arabidopsis seeds. Plant Physiol. 123: 497–508. [CrossRef] [PubMed] [Google Scholar]
  • Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies HM, Voelker TA. 1999. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2-position of triacylglycerols in lauric acid rapeseed oil and can increase total laurate levels. Plant Physiol. 120: 739–746. [CrossRef] [PubMed] [Google Scholar]
  • Kontowski S, Friedt W. 1994. Genotypic effects on microspore culture in a breeding program for high erucic acid content of Brassica napus. Bull. GCIRC 10: 30–38. [Google Scholar]
  • Kräling K. 1987. Utilization of genetic variability of resynthesized rapeseed. Plant Breed. 99: 209–217. [CrossRef] [Google Scholar]
  • Lassner MW, Levering CK, Maelor Davies H, Knutzon DS. 1995. Lysophosphatidic acid acyltransferase from meadowfoam mediates insertion of erucic acid at the sn-2-position of triaglycerol in transgenic rapeseed oil. Plant Physiol. 109: 1389–1394. [CrossRef] [PubMed] [Google Scholar]
  • Lassner MW, Lardizabal K, Metz JG. 1996. A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell. 8: 281–292. [PubMed] [Google Scholar]
  • Lichter R. 1982. Induction of haploid plants from isolated pollen of Brassica napus L. Z. Pflanzenphysiol. 105: 427–434. [CrossRef] [Google Scholar]
  • Lühs W, Friedt W. 1994. Stand und Aussichten der züchterischen Entwicklung von Raps (Brassica napus L.) mit einem maximalen Erucasaüergehalt im Öl [Present state and prospects of breeding rapeseed (Brassica napus) with a maximum erucic acid content in seed oil]. Bull. GCIRC 10: 21–22. [Google Scholar]
  • Lühs W, Friedt W. Breeding of high erucic rapeseed by means of Brassica napus resynthesis. Rapeseed today and tomorrow. Cambridge, 1995, pp. 449–451. [Google Scholar]
  • Lühs W, Friedt W. 1997. Erucic acid allelism in Brassica napus. In: ISHS Symposium on Brassicas – Tenth Crucifer Genetics Workshop, Rennes, France, 229 p. [Google Scholar]
  • Lühs WW, Voss A, Han J, et al. Genetic modification of erucic acid biosynthesis in Brassica napus. In: Mugnozza GTS, Porceddu E, Pagnotta MA, eds. Genetics and breeding for crop quality and resistance – Developments in plant breeding. Dordrecht (Netherlands): Kluwer, Academic Publishers, 1999, Vol. 8, pp. 323–330. [Google Scholar]
  • Lydiate D, Sharpe A, Lagercrantz U, Parkin I. 1993. Mapping the Brassica genome. Outlook Agric. 2: 85–92. [Google Scholar]
  • Mahler KA, Auld DL. 1988. Fatty acid composition of 2100 accessions of brassica. University of Idaho, 173 p. [Google Scholar]
  • Merrien A. 1997. CR Workshop Crambe abyssinica, San Miniato (Italie), 15-16 mai 1997. [Google Scholar]
  • Millar AA, Kunst L. 1997. Very long chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 12: 121–131. [CrossRef] [PubMed] [Google Scholar]
  • Miller RW, Earle FR, Wolff IA. 1964. Search for new industrial oils. IX. Cuphea, a versatile source of fatty acids. J. Am. Oil Chem. Soc. 41: 279–280. [CrossRef] [Google Scholar]
  • Möllers C, Iqbal MCM, Röbbelen G. 1994. Efficient diploidization of Brassica napus by colchicine treatment of microspores and regeneration of doubled haploid plants. Euphytica 75: 95–104. [CrossRef] [Google Scholar]
  • Möllers C, Rücker B, Stelling D, Schierholt A. 2000. In vitro selection for oleic and linoleic acid content in segregating populations of microspore derived embryos of Brassica napus. Euphytica 112: 195–201. [CrossRef] [Google Scholar]
  • Nagiec MM, Wells GB, Lester RL, Dickson RC. 1993. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J. Biol. Chem. 268: 22156–22163. [PubMed] [Google Scholar]
  • Nath UK, Iqbal MCM, Möllers C. 2007. Early, non-destructive selecion of microspore-derived embryo genotypes in oilseed rape (Brassica napus L.) by molecular markers and oil quality analysis. Mol. Breed. 19: 285–289. [CrossRef] [Google Scholar]
  • Nath UK. 2008. Increasing erucic acid content in the seed oil of rapeseed (Brassica napus L.) by combining selection for natural variation and transgenic approaches. Ph.D. Dissertation, Georg-August-University Göttingen, Germany. [Google Scholar]
  • Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C. 2009. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor. Appl. Genet. 118: 765–773. [CrossRef] [PubMed] [Google Scholar]
  • Ohlrogge J, Browse J. 1995. Lipid biosynthesis. Plant Cell. 7: 957–970. [CrossRef] [PubMed] [Google Scholar]
  • Olsson G. Allopolyploids in Brassica. In: Olsson G (ed.). Svalof 1886–1986. Research and results in plant breeding. Stockholm: Lts Forlag. 1986, pp. 114–119. [Google Scholar]
  • Paterson AH, Tanksley SD, Sorrells ME. 1991. DNA markers in plant improvement. Adv. Agron. 46: 39–90. [CrossRef] [Google Scholar]
  • Phillips BE, Smith CR Jr, Tallent WH. 1971. Glycerides of Limnanthes douglasii seed oil. Lipids 6: 93–99. [CrossRef] [Google Scholar]
  • Pourdad SS, Sachan JN. 2003. The inheritance of erucic acid content in summer rapeseed (Brassica napus L.). In: Proceedings of 11th Intl Rapeseed Congress, 6–10 July 2003, Copenhagen, Denmark, Vol. 5, pp. 226–228. [Google Scholar]
  • Quiros CF, Hu J, Truco MJ. 1994. DNA-based marker Brassica maps. In: Phillips RL, Vasil IK. eds. Advances in cellular and molecular biology of plants. DNA based markers in plants. Dodrecht/Boston/London: Kluwer Academic Publ., Vol. 1, pp. 199–222. [Google Scholar]
  • Roscoe T, Delseny M. 1997. Modification of triacylglycerol composition in Brassica napus. In: ISHS Symposium on Brassicas – Tenth Crucifer Genetics Workshop, Rennes. France, p. 60. [Google Scholar]
  • Sasongko ND, Möllers C. 2005. Towards increasing erucic acid content in oilseed rape (Brassica napus L.) through the combination with genes for high oleic acid. J. Am. Oil Chem. Soc. 82: 445–449. [CrossRef] [Google Scholar]
  • Schierholt A, Rücker B, Becker HC. 2001. Inheritance of high oleic acid mutations in winter oilseed rape (Brassica napus L.). Crop. Sci. 41: 1444–1449. [CrossRef] [Google Scholar]
  • Song K, Tang K, Osborn TC. 1993. Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theor. Appl. Genet. 86: 811–821. [CrossRef] [PubMed] [Google Scholar]
  • Stefansson BR. The development of improved rapeseed cultivars. In: Kramer JKG, Sauer FD, Pigden WJ, eds. High and low erucic acid rapeseed oils. Toronto (Canada): Academic Press, 1983, pp. 143–159. [Google Scholar]
  • Szewc-McFadden AK, Kresovich S, Bliek SM, Mitchell SE, McFerson JR. 1996. Identification of polymorphic, conserved simple sequence repeats (SSRs) in cultivated Brassica species. Theor. Appl. Genet. 93: 534–538. [CrossRef] [PubMed] [Google Scholar]
  • Taylor DC, Weber N, Underhill EW, et al. 1990. Storage-protein regulation and lipid accumulation in microspore embryos of Brassica napus L. Planta 181: 18–26. [CrossRef] [PubMed] [Google Scholar]
  • Taylor DC, Weber N, Barton DL, Underhill EW, Hogge LR, Weselake RJ. 1991. Triacylglycerol bioassembly in microspore-derived embryos of Brassica napus L. cv Reston. Plant. Physiol. 97: 65–79. [CrossRef] [PubMed] [Google Scholar]
  • Taylor DC, Weber N, Hogge LR, Underhill EW, Pomeroy MK. 1992. Formation of trierucoylglycerol (trierucin) from 1,2-dierucoylglycerol by a homogenate of microspore-derived embryos of Brassica napus L. J. Amer. Oil Chem. Soc. 69: 355–358. [CrossRef] [Google Scholar]
  • Taylor DC, Ferrie AMR, Keller WA, Giblin EM, Pass EW, MacKenzie SL. 1993. Bioassembly of acyl lipids in microsporederived embryos of Brassica campestris L. Plant Cell. Rep. 12: 375–384. [CrossRef] [PubMed] [Google Scholar]
  • Taylor DC, MacKenzie SL, McCurdy AR, et al. 1994. Stereospecific analyses of seed triacylglycerols from high-erucic acid brassicaceae: detection of erucic acid at the sn-2-position in Brassica oleracea L. genotypes. JAOCS 71: 163–167. [Google Scholar]
  • Taylor DC, Barton DL, Giblin EM, MacKenzie SL, Van den Berg CGJ, McVetty PBE. 1995. Microsomal lyso-phosphatidic acid acyltransferase from a Brassica oleracea cultivar incorporates erucic acid into the sn-2-position of seed triacylglycerols. Plant Physiol. 109: 409–420. [PubMed] [Google Scholar]
  • Thierfelder A, Lühs W, Friedt W. 1993. Breeding of industrial oil crops with the aid of biotechnoloogy: a review. Ind. Crop. Prod. 1: 261–271. [CrossRef] [Google Scholar]
  • Thormann CE, Romero J, Mantet J, Osborn TC. 1996. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor. Appl. Genet. 93: 282–286. [CrossRef] [PubMed] [Google Scholar]
  • Uzunova M et al. Mapping of the erucic acid genes in Brassica napus and their correspondence to QTLs for seed oil content. In: Rapeseed today and tomorrow. Cambridge: Cambridge University Press, 1995, pp. 1196–1198. [Google Scholar]
  • Waugh R, Powell W. 1992. Using RAPD markers for crop improvement. Trends Biotechnol. 10: 186–191. [Google Scholar]
  • Weier D, Hanke C, Eickelkamp A, et al. 1997. Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L.). Fett/Lipid 99: 160–165. [CrossRef] [Google Scholar]
  • Weier D, Lühs W, Dettendorfer J, Frentzen M. 1998. sn-1-Acylglycerol-3-phosphate acyltransferase of Escherichia coli causes insertion of cis-11 eicosenoic acid into the sn-2-position of transgenic rapeseed oil. Mol. Breed. 4: 39–46. [CrossRef] [Google Scholar]
  • Wilmer JA, Wallington EJ, Slabas TR. Very high erucic acid rape: a dream or reality. In: Proceedings of 11th International Rapeseed Congress, 6–10 July 2003, Copenhagen, Denmark, 2003, Vol. 2, pp. 583–585. [Google Scholar]
  • Wolter VFP, et al., 1991. Biochemical and molecular biological approaches for changing the fatty acid composition of rape seed oil. Fat Sci. Technol. 8: 288–290. [Google Scholar]
  • Wolter FP, Eickelkamp A, et al. Trierucin biosynthesis in transgenic rapeseed cloning and expression of cDNAs encoding an erucoyl-CoA specific acyltransferase. Rapeseed today and tomorrow. Cambridge, 1995, pp. 473–475. [Google Scholar]
  • Zaki MAM, Dickinson HG. 1991. Microspore-derived embryoids in Brassica: the significance of division symmetry in pollen mitosis I to embryogenic development. Sex. Plant Reprod. 4: 48–55. [Google Scholar]
  • Zhao J, Dimov Z, Becker HC, Ecke W, Möllers C. 2008. Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol. Breed. 21: 115–125. [CrossRef] [Google Scholar]
  • Zou J, Katavic V, Giblin EM, Barton DL, MacKenzie SL, Keller WA, Hu X, Taylor DC. 1997. Modification of seed oil content and acyl composition in the Brassicaceae by expression of the yeast sn-2 acyltransferase gene. Plant Cell. 9: 909–923. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.