Open Access
Issue
OCL
Volume 20, Number 5, September-October 2013
Article Number D505
Number of page(s) 12
Section Dossier : Biodiesel et huiles hydrotraitées / Biodiesel and hydrotreated oils
DOI https://doi.org/10.1051/ocl/2013027
Published online 27 September 2013
  • Acquaye AA, Wiedmann T, Feng K, et al. 2011. Identification of carbon hot-spots and quantification of GHG intensities in the biodiesel supply chain using hybrid LCA and structural path analysis, Environ. Sci. Technol. 45: 2471–2478. [CrossRef] [PubMed] [Google Scholar]
  • ADEME. 2010. Analyses de cycle de vie appliquées aux biocarburants de première génération consommés en France. Étude réalisée pour le compte de l’ADEME par BIO IS 2010, 1–236 [Google Scholar]
  • AGRESTE. 2004. Enquête TERUTI – série 1992 à 2004. Service de la Statistique et de la Prospective (SSP) du Ministère de l’Agriculture, de l’Alimentation, de la Pêche, de la Ruralité et de l’Aménagement du Territoire. [Google Scholar]
  • AGRESTE. 2010. Enquête TERUTI-LUCAS – Nouvelle série 2005 à 2010. Service de la Statistique et de la Prospective (SSP) du Ministère de l’Agriculture, de l’Alimentation, de la Pêche, de la Ruralité et de l’Aménagement du Territoire. [Google Scholar]
  • Bauen A, Chudziak C, Vad K, Watson PA. 2010. causal descriptive approach to modelling the GHG emissions associated with the indirect land use impacts of biofuels: Final reports. E4tech, UK department of transport 2010. [Google Scholar]
  • Bird N, Cowie A, Cherubini F, Jungmeier G. 2011. Using a life cycle assessment approach to estimate the net greenhouse gas emissions of bioenergy, IEA Bioenergy, Strategic Report, ExCo:2011:03. [Google Scholar]
  • Brandão M. 2011. Food, Feed, Fuel, Timber or Carbon Sink? Towards sustainable land-use systems – a consequential life cycle approach, Ph.D. thesis, Centre for Environmental Strategy; Division of Civil, Chemical and Environmental Engineering; Faculty of Engineering and Physical Sciences; University of Surrey. [Google Scholar]
  • Chakir R, Vermont B. 2013. Étude complémentaire à l’analyse rétrospective des interactions du développement des biocarburants en France avec l’évolution des marches français et mondiaux et les changements d’affectation des sols. Étude réalisée pour le compte de l’ADEME par l’INRA, pp. 1–69. [Google Scholar]
  • Crutzen PJ, Mosier AR, Winiwarter W. 2007. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels, Atmos. Chem. Phys. Discuss. 8: 11191–11205 [CrossRef] [Google Scholar]
  • Curran MA. 2013. Life cycle assessment: a review of the methodology and its application to sustainability. Curr. Opin. Chem. Eng. 2: 1–5. [CrossRef] [Google Scholar]
  • De Cara S, Goussebaïle A, Grateau R, et al. 2012. Revue critique des études évaluant l’effet des changements d’affectation des sols sur les bilans environnementaux des biocarburants. Étude réalisée pour le compte de l’ADEME par l’INRA, pp. 1−96. [Google Scholar]
  • Delucchi M. 2011. A conceptual framework for estimating the climate impacts of land-use change due to energy crop programs. Biomass and Bioenergy 35: 2337–2360. [CrossRef] [Google Scholar]
  • Di Lucia L, Ahlgrem S, Ericsson K. The dilemma of indirect land-use changes in EU biofuel policy – An empirical study of policy-making in the context of scientific uncertainty. Environ. Sci. Policy. 2012: 9–19. [CrossRef] [Google Scholar]
  • Edwards R, Mulligan D, Marelli L. 2010. Indirect land use change from increased biofuels demand: comparison of models and results of marginal biofuels production from different feedstocks, JRC-IE, 2010. [Google Scholar]
  • Ekvall T, Tillman AM, Molander S. 2005. Normative ethics and methodology for life cycle assessment. J. Clean. Prod. 13: 1225−1234. [CrossRef] [Google Scholar]
  • Ekvall T, Weidema boP. 2004. System boundaries and input data in consequential life cycle inventory analysis. Int. J. LCA 3: 161−171. [CrossRef] [Google Scholar]
  • European Commission. 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. 2009. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=Oj:L:2009:140:0016:0062:en:PDF. [Google Scholar]
  • European Commission. 2010. Rapport de la Commission sur les changements indirects d’affectation des sols liés aux biocarburants et aux bioliquides. Available at: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2010:0811:FIN:FR:PDF. [Google Scholar]
  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. 2008. Land Clearing and the Biofuel Carbon Debt. Science 319: 1235−1237. [CrossRef] [PubMed] [Google Scholar]
  • Farrel AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM. 2006. O’Hare M, Kammen DM. Ethanol can contribute to energy and environmental goals. Science 311: 506−508. [CrossRef] [PubMed] [Google Scholar]
  • Fritsches UR, Sims R, Monti A. 2010. Direct and indirect land use competition issues for energy crops and their sustainbale production – an overview. Biofuel Bioprod. Biores. 4: 692−704. [CrossRef] [Google Scholar]
  • Gawel E, Ludwig G. 2011. The iLUC dilemma: How to deal with indirect land use changes when governing energy crops?. Land Use Policy 28: 846−856. [CrossRef] [Google Scholar]
  • Gnansounou E, Dauriat A, Villegas J, Panichelli, L. 2009. Life cycle assessment of biofuels : Energy and greenhouse gas balances. Biores. Technol. 100: 4919−4930. [CrossRef] [Google Scholar]
  • Gnansounou E, Panichelli L, Dauriat A, Villegas JD. 2008. Accounting for indirect land use changes in ghg balance of biofuels – Review of current approaches. Lausanne, Switzerland: École polytechnique fédérale de Lausanne, 22 p. [Google Scholar]
  • Hamelinck C, Koop K, Croezen H, Koper M, Kampman B, Bergsma G. 2008. Technical Specification: Greenhouse Gas Calculator for Biofuels. Utrecht, Netherlands: Ecofys & CE Delft, commissioned by SenterNovem, 109 p. [Google Scholar]
  • In Numeri. 2012. Analyse rétrospective des interactions du développement des biocarburants en France avec l’évolution des marchés français et mondiaux (productions agricoles, produits transformés et coproduits) et les changements d’affectation des sols. Étude réalisée pour le compte de l’ADEME, pp. 1−128. [Google Scholar]
  • ISO. 2006a. ISO Norm 14040: Environmental management-life cycle assessment-principles and framework. [Google Scholar]
  • ISO. 2006b. ISO Norm 14044: Environmental management-life cycle assessment-requirements and guidelines. [Google Scholar]
  • Kim S, Dale BE. 2011. Indirect land use change for biofuels: Testing predictions and improving analytical methodologies. Biomass and Bioenergy 35: 3235−3240. [CrossRef] [Google Scholar]
  • Kløverpris J, Wenzel H, Nielsen PH. 2008. Life cycle inventory modeling of land use induced by crop consumption. Part 1: conceptual analysis and methodological proposal. Int. J. Life Cycle Assess. 13: 13–21. [Google Scholar]
  • Laborde D. 2011, Assessing the land use change consequences of European biofuel policies. IFPRI. [Google Scholar]
  • Laurance WF. 2007. Switch to corn promotes Amazon deforestation. Science 318: 1721. [CrossRef] [PubMed] [Google Scholar]
  • Lechon Y, Cabal H, Sáez R. 2011. Life cycle greenhouse gas emissions impacts of the adoption of the EU Directive on biofuels in Spain. Effect of the import of raw materials and land use changes. Biomass and Bioenergy 35: 2374−2384. [CrossRef] [Google Scholar]
  • Lepage C. 2013. Projet de rapport sur la proposition de directive du Parlement européen et du Conseil modifiant la directive 98/70/CE concernant la qualité de l’essence et des carburants diesel et modifiant la directive 2009/28/CE relative à la promotion de l’utilisation de l’énergie produite à partir de sources renouvelables (COM(2012)0595 – C70337/2012 – 2012/0288(COD)), Commission de l’Environnement, de la santé publique et de la sécurité alimentaire. [Google Scholar]
  • Malça J, Freire F. 2011. Life-cycle studies of biodiesel in Europe: A review addressing the variability of results and modeling issues. Renew. Sust. Energ. Rev. 15: 338−351. [CrossRef] [Google Scholar]
  • Marelli L, Ramos F, Hiederer R, Koeble E. 2011. Estimate of GHG emissions from global land use change scenarios, JRC Technical notes, JRC-IE. [Google Scholar]
  • Mellilo JM, Reilly JM, Kicklighter DW, et al. 2009. Indirect Emissions From Biofuels: How important? Science 326: 1397−1399. [CrossRef] [PubMed] [Google Scholar]
  • Nassar AM, Harfuch L, Bachion LC, Moreira MR. Biofuels and land-use changes: searching for the top model. Interface Focus 1: 224−232. [CrossRef] [PubMed] [Google Scholar]
  • Overmars KP, Stehfest E, Ros JPM, Prins AG. 2011. Indirect land use change emissions related to EU biofuel consumption: an analysis based on historical data. Environ. Sci. Policy. 14: 248−257. [CrossRef] [Google Scholar]
  • Plevin RJ, O’Hare M, Jones AD, Torn MS, Gibbs HK. 2010. Greenhouse gas emissions from biofuels’ indirect land use change are uncertain but may be much greater than previously estimated. Environ. Sci. Technol. 44: 8015−8021. [CrossRef] [PubMed] [Google Scholar]
  • Reinhard J, Zah R. 2011. Consequential life cycle assessment of the environmental impacts of an increased rapemethylester (RME) production in Switzerland. Biomass and Bioenergy 35: 2361−2373. [CrossRef] [Google Scholar]
  • Reinhard J, Zah R. 2009. Global environmental consequences of increased biodiesel consumption in Switzerland: consequential life cycle assessment. J. Clean. Prod. 17: S46-S56. [CrossRef] [Google Scholar]
  • Searchinger T, Heimlich R, Houghton RA, et al. 2008. Use of US cropland for biofuels increases greenhouse gases through emissions from land-use-change. Science 319: 1238−1240. [CrossRef] [PubMed] [Google Scholar]
  • Searchinger T, Hamburg SP, Melillo J, et al. 2009. Fixing a Critical Climate Accounting Error. Science 326: 527−528. [CrossRef] [PubMed] [Google Scholar]
  • US Environmental Protection Agency. 2009. Draft regulatory Impact analysis: Changes to Renewable Fuel Standard. [Google Scholar]
  • US Environmental Protection Agency. 2010 Renewable fuel standard program (RFS2) regulatory impact analysis. [Google Scholar]
  • Van Stappen F, Brose I, Schenkel Y. 2011. Direct and indirect land use changes issues in European sustainability initiatives: State-of-the-art, open issues and future developments. Biomass and Bioenergy 35: 4824−4834. [CrossRef] [Google Scholar]
  • Wang M. 2005. Updated Energy and Greenhouse Gas Emission results of Fuel Ethanol. Center for Transportation Research, Argonne National Laboratory. Available at: http://www.transportation.anl.gov/pdfs/TA/375.pdf. [Google Scholar]
  • Wang M, Huo H, Arora S. 2011. Methods of dealing with co-productsof biofuels in life-cycle analysis and consequent results within the U.S context. Energ. Policy 39: 5726–5736. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.